
Cabinet: Managing Data Efficiently in the Global Federated
File System

Avinash Kalyanaraman, Andrew Grimshaw
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

{ak3ka, grimshaw}@virginia.edu

Abstract—With ever expanding datasets, efficient data

management in grids becomes important. This paper describes
Cabinet which employs two techniques for efficiently managing
data in grids- a caching system and a new file staging approach
called coordinated staging. The caching system is designed based
on the characteristics of grid applications. Coordinated staging is
based on the BitTorrent Protocol model and is specifically
designed for High Throughput Computing (HTC) applications, a
common use-case for grids. In coordinated staging, each site that
is assigned to execute an individual job of the HTC application
treats other execution sites as potential replica-stores. In our
evaluation, we show that coordinated staging lowered the
download time of a file by 3.85x, and increased the throughput of
the download by 2.86x over the conventional approach of file
transfer from a single source.

Keywords—grids; file staging; big data; distributed file systems

I. INTRODUCTION
Scientific collaborations and the increasing computational

needs of applications have warranted the development of grids
[1]. The ability of grids to provide a larger resource pool than
what is available at a single site has helped solve problems
previously believed to be intractable. On the other hand, the
data-size used by applications has been increasing. Seidel [2]
claims that the data generated each year is greater than the sum
of the generated-data over all previous years. Thus, managing
such large amounts of data in computational grids becomes
important. Researchers are interested in both analyzing this
data and harnessing the vast computational resources available
via the grid. The consequence is a situation where the data and
computation are not collocated, warranting the need for
efficient data management techniques.

At the same time, storage is becoming cheaper and the
amount of storage available for researchers at their campuses
and supercomputing sites has been increasing. This storage
space can be used to cache and replicate input files. Caching
and replication are two traditional techniques for efficient data
management in distributed systems. This work, Cabinet deals
with caching in the context of a computational grid.

Commonly scientists' datasets are located at their
institutions. Two techniques [3] exist for moving data to the
compute site (referred henceforth as simply site): pre-staging
input files [4] and on-demand input file access [3, 5, 6]. Pre-
staging moves all the input files required by a job to the site
before the job starts running. Typically users have allocations
indicating the amount of wall-clock time they can use at a site.
In this approach, no allocations are consumed during stage-in.

On-demand access recreates the “home filesystem” of the user
at the site by forwarding read requests to the institutions.
However, this method suffers a serious limitation. The
execution time of the application increases as it blocks during
reads waiting for data to be fetched from "home". As users are
often charged allocations from the time their job starts
executing, this method consumes more allocations than pre-
staging. Since allocations are valuable entities obtained via a
strict peer-review process, it becomes natural for users to prefer
pre-staging. Consequently, Cabinet deals with the pre-staging
approach and employs a new technique called coordinated
staging which makes pre-staging faster.

The work has been done in the context of the Global
Federated File System (GFFS) [7]. The GFFS is a web-services
based file system for grids. GFFS provides an ability for
campuses, supercomputing centers, industrial centers etc to
operate under a single, global path-based namespace without
requiring the data owners and application developers to change
the way they store and operate on the data.

In grids, the term resource denotes an implementation of a
particular service. Since the GFFS is a standards-based
filesystem, each resource can be understood as an
implementation of a standard. For example, every file is a
resource implementing the ByteIO standard [8] and every
directory is a resource of the Resource Namespace Service [9]
specification. Being a wide-area distributed filesystem, the
GFFS suffers from the limitations of the network. The first part
of this work: coordinated staging treats the GFFS from a
computational grid's perspective. The second part of this work:
caching treats the GFFS from both a computational grid and
data grid's perspective.

The rest of this paper is organized as follows: Section II
motivates the problem, Section III describes a new file staging
technique called coordinated staging, Section IV describes the
caching system and its working, Section V presents the
implementation, Section VI shows the evaluation, Section VII
discusses the related work and Section VIII summarizes the
work.

II. MOTIVATION
In this section, we describe the need for caching and fast

file staging. For the rest of this section, the following notations
will be used. Let J be a job submitted by user U. Let F = {F1,
F2, ... , Fn} be the set of input files required by J, such that F �
Ø. Let J’ denote a reuse job. A reuse job is defined to be a job
that is submitted after J finishes execution. Let F' be the set of

2013 IEEE 9th International Conference on e-Science

978-0-7695-5083-1/13 $25.00 © 2013 IEEE

DOI 10.1109/eScience.2013.36

124

input files required by J’, and F F’ � Ø. Let U’ denote any
user except U. J’ can be understood to belong to U or U’,
unless stated explicitly.

A. The Need for Caching
Caching is important in computational grids for two

reasons: input files tend to be shared by jobs, and input files
tend to be reused across jobs.

1) Sharing: Sharing occurs when a “single job submission”
consisting of multiple individual tasks, uses a common input
file(s). Such jobs form a sub-category of high throughput
computing (HTC) applications [10], which are an important
use-case of computational grids. HTC applications refer to a
class of applications which involves users running multiple
copies of their programs simultaneously with no
communication between the individual tasks. In such cases,
we would not want each individual task to stage-in the same
input file. A single stage-in into the site must occur. An
example where the same input files get used repeatedly is
parameter sweep applications. For e.g., Garzon [11] showed
the effectiveness of caching for a protein docking application.

2) Reuse: Reuse may occur for multiple reasons. In some
cases, users learn input parameters from an initial set of runs.
Alternatively, a user may modify his algorithm based on the
initial results. The subsequent “modified” program will use
the same set of input files and libraries. In other words, trial-
and-error which is inevitable in scientific research results in
reuse. At times, generating input files could be expensive,
leading to unavoidable reuse. Reuse can also occur due to jobs
failing because of programming errors, scripting errors or
execution node failure. While these are use-cases of input file
reuse from an individual user or his research group’s
perspective, some input files like public databases may be
common across several research groups, creating a greater
potential for reuse.

Storage is cheap enough to not hinder the caching and
replication of input files that are shared and reused, instead of
copying them across the network many times.

B. The Need for Fast File Staging
Despite caching, it is still necessary for files to be staged-in

quickly (the first time), so that jobs can begin execution.
Staging may be necessary even during reuse. There are many
reasons why the reuse-job J’ need not execute on the cached
site(s) (sites of the initial run J by user U):

Primarily, the metascheduling algorithms need not always
be data-aware. For instance, they may take queuing delay and
the number of available processors into consideration. For
example, GridWay [14] schedules jobs onto resources using a
user-specified ranking model. Secondly, scheduling constraints
may prevent J’ from executing on the cached sites. For
example, the memory or processor requirements of J’ may not
be satisfiable by the cached site. Finally, J’ may belong to a
different user U’, who may not have allocations or permissions
to run on the cached site(s).

Hence, given that reuse need not necessarily occur on the
cached site, a mechanism for fast staging is needed so that jobs
can begin execution quickly. Moreover, we will also need a
fast staging mechanism for those files which exist as a single

copy (i.e those files which have not been cached or replicated).
This need for fast file staging is addressed by coordinated
staging.

III. COORDINATED STAGING
In this paper, we present coordinated staging, a new

technique for fast staging, specifically designed for HTC
applications. In coordinated staging, each site assigned to
execute a sub-job of the HTC application treats the other sites
as potential replica-stores.

To understand coordinated staging, let us first take a look at
a typical HTC job-submission in grids. The user submits an
HTC application-description file to a metascheduler [15]. The
metascheduler parses this file and extracts the description of
each individual task of the HTC job.

This description includes among other things, the list of
files required to be staged into the site for successful execution
of that (individual) job. The metascheduler assigns each
(individual) job to a site based on a scheduling algorithm.
Typically, these jobs run at multiple sites primarily because
there is a limit on the number of jobs a user can have in the
local queuing system of a site at any given instant of time. In
other words, even though the execution-service running at the
site may interface to a queuing system, the service cannot qsub
an unbounded number of jobs on behalf of a user. For example,
the maximum number of jobs that may be queued by a user on
TACC-Ranger is 50.

As Cabinet's data-management strategies are employed in
the context of the GFFS, coordinated staging is designed for
the common case of the input file stage URI being a GFFS
path. The common way of staging files which are not cached or
replicated is for each site to download them from the lone
copy. This lone copy which is explicitly created by the user (as
opposed to an implicit creation by caching or replication) is
called the primary. Such an approach has a big disadvantage:
all sites fetch only from the primary making it a potential
bottleneck and this primary may not be “close” to the
downloading sites. The terms “close” and “far” refer to
network proximity and bandwidth.

However, it may be possible that the sinks (sites) are closer
to each other than to the source(s). For example, in DEISA [16]
and XSEDE [17] the sites are connected to each other by high
bandwidth links. In such cases, we would want sites to
download as much content as possible from one another, as
they are all downloading the same content. Coordinated
staging achieves this by making each site that downloads a file
f treat other sites as potential replica-stores for f.

To describe how each site treats other sites as potential
replica-stores, we use the following notation. Let J = {J1, J2,
…, Jn} be an HTC application, where Ji (1�i�n) denotes a sub-
job of the HTC application. Let S = {S1, S2, …, Ss} be the set of
sites available to the metascheduler to schedule jobs on. The
metascheduler schedules each job Ji onto some site Sj (1�j�s).
Each job Ji requires some set of files Fi to be staged into Sj for
successful execution. While scheduling Ji onto Sj, the
metascheduler also informs Sj about the set of sites who will
stage-in each file f, where f � Fi. The metascheduler ensures
that each site which stages-in f sees this same set of sites in the
same order. As we shall soon see, this order is critical to the
working of coordinated staging.

125

Let Sf = { S1, S2, ... , Sk} be the set of sites that will be
downloading f. The goal of coordinated staging is to maximize
the traffic on faster peer links (links providing faster download
rates). Clearly, this warrants some kind of ordering in the way
the peers download a file. Consequently, each site s � Sf
queries f and obtains its size sz. This sz amount of contents is
implicitly partitioned among the Sf sites onto Sf disjoint chunks
based on the order provided by the metascheduler. For example
if sz = 400GB and |Sf| = 4, then a vector of the form <(S1, f, 0,
100GB), (S2, f, 100GB, 100GB), (S3, f, 200GB, 100GB), (S4, f,
300GB, 100GB)> is constructed by all the sites. Each element
of the vector is of the form (site, file, offset, size), meaning that
the site is responsible for downloading size amount of data
from file starting at offset. This chunk, which each site is said
to be "responsible for", is referred to as the primary chunk (PC)
of that site. The PC can be downloaded from the primary or
replica(s) using the download algorithm, explained in Section
III-B. The site responsible for the PC is called its master. All
non-PCs of a master are referred to as secondary chunks (SCs).
It is important to note that the download order of chunks does
not matter, as long as they are arranged correctly at the sink.

The number of chunks for a file f equals the number of sites
downloading f. Having obtained the PC, each site has to
download the remaining |Sf|-1 SCs. Each site picks one SC at a
time and downloads it completely before moving to the next
one. As we are dealing with big datasets, and the duration of a
chunk's download is non-trivial, each site following the same
order of SCs could result in all of them attempting to read from
that chunk's master (simultaneously). This will limit that site's
share of bandwidth coming out of the master. This is an
incarnation of the First Mile Problem. Since the order of the
download of chunks do not matter, each site shuffles the order
of the SCs by randomly picking a SC and downloading it to
completion. Each SC is downloaded like the PC using the same
download algorithm but by also including that SC's master as a
potential replica (to explore) and the perceived bandwidth
knowledge with the primary or replicas from any previous
chunk's download associated with f. We refer to this approach
as unoptimistic coordinated staging (unopt-CS). The case for
files of non HTC applications becomes a special case for
coordinated staging with no peers.

A. Optimistic coordinated staging
We have also created an extension to unopt-CS called

optimistic coordinated staging (opt-CS). Since the order of
chunk download has been randomized, it is possible for a site’s
peer who can provide a better download rate than the chunk's
master or primary, or replicas to have already downloaded that
chunk of interest. Consequently, opt-CS extends unopt-CS
wherein each SC is downloaded using the download algorithm
by (optimistically) including all the peers provided by the
metascheduler as potential replicas. An attempt to read from a
potential replica that has not yet downloaded the required
content will result in a fault being returned. Such a site will no
longer be considered as a potential replica for the download of
that chunk (not the file).

B. The Download Algorithm
The goal of our download algorithm is to reduce the time

taken by a sink to download a chunk that has been replicated.

An advantage of this algorithm is that it does not use any
explicit services for network monitoring or forecasting. Before
explaining the algorithm’s working, we first introduce the
phases and the sub-phases of the algorithm: Explore
Phase(EP), Download Phase(DP), Unchoke Phase(UP),
Ignore Sub-Phase(ISP) and Heed Sub-Phase(HSP).

1) The Phases and Sub-phases of the algorithm:

Ignore Sub-Phase (ISP): It is the first step of EP and UP
(explained below). In this sub-phase, the sink downloads Di
amount of data from a replica without noting its perceived
bandwidth. The goal here is to warm-up the disk or filesystem
caches at the source, so that comparisons can be made by
reads in EP and UP with warmed-up reads of DP.

Heed Sub-Phase (HSP): It is a sub-phase of all three phases.
Here, the sink downloads Dh amount of data from a replica
and notes its perceived bandwidth. The connection and caches
are warmed-up before this sub-phase is invoked.

Explore Phase (EP): This phase is run on those replicas about
whom the sink wants to acquire knowledge on its perceived
bandwidth. This phase starts with the ISP for warm-up
purposes. ISP is followed by HSP, where the actual
knowledge on perceived bandwidth is acquired.

Download Phase (DP): In this phase, the sink downloads
from a replica identified to be the fastest via exploration or
unchoke. This fastest replica is called the chief replica. This
phase has two sub-parts. During the larger first sub-part, Dd
amount of data is downloaded from the chief replica without
noting the perceived bandwidth. It is different from the ISP in
the following ways. While the goal of ISP is to warm-up, this
sub-part is a consequence of that replica being the fastest.
Secondly, Dd is much larger than Di of ISP. The second sub-
part is HSP. The bandwidth perceived in HSP is used in UP.

Unchoke Phase (UP): Since the perceived bandwidth with a
replica is time-variant, each sink periodically selects a replica,
and checks if it offers better bandwidth than the chief replica.
This phase starts with the ISP to warm-up the chosen replica.
The ISP is followed by the HSP, where the bandwidth offered
by this chosen replica is noted. If this bandwidth is greater
than the chief replica's bandwidth noted during its DP, then
the unchoked replica becomes the new chief replica.

2) Methodology
 The inputs to the algorithm are: the starting byte offset to
download, the last byte offset to read, an exploration set
(represented by En) denoting the set of sources about whom the
(invoking) application has no knowledge about the perceived
bandwidth, and an explored set (represented by Ed) denoting
the set of sources about whom the (invoking) application has
knowledge about the perceived bandwidth.

The algorithm begins by first running EP on each replica
of En. The replica offering the best bandwidth among those in
Ed and En becomes the chief replica. The remaining replicas
are said to be choked. Next, the DP is run on the chief replica.
After the DP is complete, the replica at the head of the choked
list is removed. This replica is called the unchoked replica. UP

126

is run on this unchoked replica to see if it offers better
bandwidth than the chief replica. If it does not, the DP is once
again run on the chief replica. If it does, then the chief replica
is appended to the choked list, and the DP is run on this new
chief replica. This sequence of DP-UP-DP continues until the
entire chunk is downloaded.

C. Improving Single File-Transfer Speed via Parallel-TCP
To improve the download speed from a single replica, we

employ the proven technique of parallel TCP [18] in which
multiple TCP streams are used to download from the source to
mitigate the underlying slowness of TCP. On the other hand,
a common way for users to access files on the GFFS is via
FUSE [19]. Consequently, we also modified the GFFS-aware
FUSE-driver to use parallel-TCP.

IV. THE CACHING SYSTEM
 In this section, we explain the working of the caching
system. Before looking at the working, we shall explain how
the execution-site is organized to perform caching.

A. Compute-site Architecture
 A private working-directory is associated with each
individual job. This directory is wiped out when the job
completes. In existing implementations, the input files required
by the job are staged into this directory. Besides the working-
directory, there is a cache directory which stores the cached
input files. This architecture is similar to the one used in the
ARC grid middleware [20]. We next explain how re-stage-in is
prevented during sharing and reuse.

B. Sharing
For this prototype implementation, we assume that input

files are not modified by jobs during execution. This
assumption is made because currently there is no standard way
[15] of denoting such read-only input files. In order to detect
sharing, the sites require a way to identify individual jobs of
an HTC application. Consequently, the metascheduler
generates a unique identifier for every HTC application. All
individual jobs of a given HTC application have the same
identifier. If multiple individual jobs are scheduled onto the
same site, only one of the jobs will stage-in the shared input
file to its working directory. The remaining jobs will create
hard-links to this location. Creating links within the working
directory of jobs of a single HTC application ensures that if
any user incorrectly specifies his file to be read-only, then
only his jobs get affected. If a job requires a certain file f, but
other jobs of the same HTC application (at that site) requiring
f have completed execution, then a link cannot be created. The
staging is then treated like a reuse (explained below) by
downloading f on a cache-miss.

C. Reuse
One of the goals of the caching sub-system is to prevent

"big" input files from being staged-in during reuse. In order to
achieve this, whenever a site stages in an input file, it caches
that file. Only files with sizes greater than a certain caching
threshold are cached. Small files are not cached for two
reasons - owing to their small size they can be quickly re-

staged during reuse. Moreover, even if individual jobs of an
HTC application require the same file, a re-stage-in can be
prevented (as explained in Section IV-B). In ARC, cached
contents are visible only to jobs running on that site. However,
Cabinet makes cached files globally visible. This results in
both availability and performance benefits.

At the same time, the bigger input files generally tend to
be read-only. This is because scientific datasets (representative
of the "big" input files) are typically of the write-once-read-
many type [21]. Data is collected using sensors, telescopes etc,
released to the public, and then become effectively immutable.
Typically, a write corresponds to a completely new version of
the dataset being created. As a result, this globally visible
cached file is treated as a read-only replica (R-only replica)
which accepts reads from any client (subject to access control)
but does not permit writes by anyone. Since a write generally
corresponds to newer version of the file being created, we do
not propagate changes on the primary or any non read-only
copy (referred henceforth as read-write replica or RW-replica)
of the file for three main reasons: a) There is no guarantee that
the new version will be used before being evicted, b) To
accommodate the update, other cached files might get evicted,
which could result in unnecessary restaging (during reuse),
and c) Simply destroying the cached-copy on an update
notification results in simpler cache management.
Consequently, the RW-replica notifies the R-only replicas of
an update. The cached-copy destroys itself, when it receives
this invalidation message. The details of the working are
explained in Section IV-E. It is to be noted that the terms
cached file and R-only replica mean the same.

D. Write vs Update
We first define the terms write and update with respect to

a replica. A write on a read-write replica R means a user
performed an explicit write on that replica. An update on a
read-write replica R means a user performed a write on some
replica R' (R' � R), and R' propagated the write to R.

We next explain how the caching sub-system works to
handle both reuse and global visibility of cached files.

E. Methodology
Once a decision has been made to cache an input file, the

site first creates an empty cached-copy in the cache-directory.
Since the cached copy will be globally visible, it is important
to ensure that, if a replica is inaccessible to some user U, then
the cached copy should also be inaccessible to U.
Consequently, the (empty) cached-file subscribes to one of the
RW-replicas to notify it on any access control change, and
then sets its access control to that of the RW-replica. Next, the
cached copy subscribes to all RW-replicas of the file for both
writes and updates. It is necessary to subscribe to both writes
and updates because the consistency model employed in
GFFS is eventual consistency [22]. In our notification scheme,
the publisher stores the notification message in persistent
storage until it has been acknowledged (by the subscriber).
After successful subscription, the R-only replica becomes
globally visible for reads, and asynchronously downloads the
contents (via coordinated staging). Any attempt to read a

127

section of the file that has not yet been downloaded, results in
a fault being returned.

Since storage is a finite entity, a replacement algorithm is
associated with caches. In our caching system, when the
amount of storage used reaches a High Water Mark, files are
evicted using a simple Least Recently Used algorithm until a
Low Water Mark is reached.

V. IMPLEMENTATION
In this section, we explain how the caching sub-system and

coordinated staging are implemented in GenesisII [23].
GenesisII, a web service standards-based grid middleware, is
the first realization of the GFFS. Since GenesisII and GFFS
are both standards-based, we first overview a few standards
that helps understand the implementation better.

A. Standards
WS-Addressing Endpoint references (EPRs) [24] are a

standard way to represent and address web service endpoints
(namely resources). One of the elements of the EPR is the
Metadata. The Metadata element contains extra information
about the resource that can be used by clients as hints.

WS-Naming [25] extends WS-Addressing by providing
means for transparent failover, replication (or caching) and
migration. Since EPRs cannot be compared, they cannot be
used as a cache key. WS-Naming addresses this limitation by
providing means to uniquely "name" a resource via an
Endpoint Identifier (EPI). This EPI is embedded within the
Metadata of an EPR. For example, when a file (ByteIO
resource) is replicated, all replicas have different EPRs but
share the same EPI. WS-Naming also states that associated
with each resource can be a resolver, which stores the EPR of
the primary and replicas of that resource. When queried with
an EPI, the resolver returns an EPR from this set, thus
providing a way to achieve transparent failover.

The Basic Execution Service (BES) [12] describes a
standard way for creating, monitoring and controlling jobs at
execution sites. Depending on the implementation, a BES may
execute the job on a single computer, a cluster interfaced by a
queuing system, the cloud etc.

B. Caching and Coordinated Staging Implementations
Coordinated staging treats each site as a potential replica-

store. Consequently, there needs to be a way for peers to
address and read from replicas in this replica-store, Hence,
each BES resource incorporates within the Metadata of its
EPR, the EPR of another service called the Fast Stager
Service (FSS). FSS behaves like a resolver by matching a
given EPI with the set of EPRs in that replica-store, and
returns the EPR corresponding to the replica. How the FSS
builds this set of EPRs is explained later. It is to be noted that
no access control check is performed by FSS. All
authentications are performed by the replicas themselves.

We next explain how each site acquires the FSS EPR of
other sites. Complying with the BES standard, to create a job
on a BES, the metascheduler makes a Create Activity call on
that BES passing an Activity Document describing the job.
Inside the xsd:any element of the Activity Document, the

metascheduler inserts the peer knowledge - i.e for each file f
required by the activity, the metascheduler inserts the FSS
EPRs of those sites who will also stage-in f. The HTC
application identifier is also inserted within the xsd:any
element. At the site, each individual job takes the help of the
Stager Manager and Download Manager for staging-in.

The Stager Manager(SM) prevents re-stage-in during
sharing by tracking the files staged-in (or being staged-in) by
the sub-jobs of a HTC application, and their corresponding
working directory paths. If a job requires a file f that has
already been staged-in (or is being staged-in) by another job of
the same HTC application, then SM creates a hard-link to that
job's working-directory location of f. Files which cannot be
linked are sent to the Download Manager for download.

The Download Manager(DM) interacts with the cache and
performs coordinated staging. In our current implementation,
only cacheable files undergo coordinated staging. In other
words, this means the “replica-store” of a site is actually its
cache. The DM first downloads those files for which that site
has to behave like a peer in coordinated staging. This is done
by looking at the Activity Document. Before downloading a
file f, the DM checks the cache using the f’s EPI as the cache-
key. On a cache-miss, the DM creates an empty ByteIO
resource [8] (corresponding to f and having the same EPI as f),
and sets up subscriptions as explained in Section IV-E.

The DM registers this ByteIO EPR with the local FSS,
making f addressable by the peers. The DM partitions f into
chunks equaling the number of FSS EPRs for f in the Activity
Document. The DM identifies its primary chunk by comparing
the EPI in the FSS EPR of the BES (associated with the job it
is downloading) with the EPIs within the FSS EPRs associated
with f in the Activity Document, and downloads it into the
cache. Next, all the (randomized) secondary chunks of f are
downloaded using coordinated staging. In unopt-CS, the DM
asks the FSS EPR associated with the chunk's master (inferred
from the Activity Document) for its local ByteIO EPR
corresponding to the EPI of f. This EPR is treated as a replica
while downloading that secondary chunk. In opt-CS, the DM
asks the masters of all secondary chunks for their local ByteIO
EPR corresponding to the EPI of f. These EPRs are treated as
replicas for each secondary chunk. After downloading a
cacheable file completely, its EPR is registered with the
resolver (if one exists) making it visible beyond the peers. The
file is then copied from the cache to the working directory of
that job.

VI. EVALUATION
The experimental setup consisted of eleven geographically

distributed sites. Table 1 describes the configuration of each
site. Table 2 shows the average bandwidth perceived by each
site with every other site.

In coordinated staging, each site "chunkifies" the file to be
staged-in, and downloads chunks of the file in a random order.
This results in seeks and writes to arbitrary offsets. We first
evaluate the overhead of writing to random offsets of an
empty file. Figure 1 shows that the overhead of seeking is
negligible and the time taken to write at an arbitrary seek
offset is nearly constant. This is because seeking generally

128

Execution site Machine Type Cache filesystem type
Texas Advanced Computing Center (TACC) - Alamo CentOS 5.7 ext3 mounted via NFS

San Diego Supercomputing Center - Sierra Red Hat Enterprise Server 5.8 ZFS mounted via NFS
Indiana University – India Red Hat Enterprise Server 5.8 ext4 mounted via NFS

University of Virginia CS - Romulus Ubuntu 10.04 ext3 mounted via NFS
University of Virginia CSE - UVACSE Ubuntu 12.04 ext4

University of Virginia University Datacenter - UDC Ubuntu 10.04 ext4
Amazon Small Instance UK Availability Zone 1a – UK1 Amazon Linux AMI ext3

Amazon Small Instance UK Availability Zone 1b – UK2 Amazon Linux AMI ext3
Amazon Small Instance UK Availability Zone 1c – UK3 Amazon Linux AMI ext3

Amazon Small Instance Japan Amazon Linux AMI ext3
Amazon Small Instance Singapore – S’pore Amazon Linux AMI ext3

Table 1 Experiment Pool

 Sink
Source

Sierra Alamo India Romulus UDC Uvacse UK1 UK2 UK3 Japan S’pore

Sierra - 4.42 6.83 6.91 10.69 7.18 3.25 2.81 2.07 4.96 2.93
Alamo 8.53 - 8.10 6.93 8.26 6.82 4.19 3.79 3.26 3.30 2.24
India 9.01 5.20 - 7.49 17.10 7.56 4.93 4.82 4.47 3.15 2.40

Romulus 9.93 6.22 5.42 - 22.73 34.28 4.19 3.66 3.42 2.42 2.32
UDC 12.44 7.81 5.70 9.17 - 9.12 4.90 3.53 3.47 2.69 2.22

UVACSE 10.54 11.16 16.15 70.95 36.44 - 7.73 6.17 5.57 3.57 2.72
UK1 4.45 2.44 5.06 6.39 8.61 5.73 - 13.49 13.47 2.98 2.18
UK2 4.41 2.32 4.92 6.29 8.14 5.19 12.99 - 13.16 2.96 2.16
UK3 4.41 2.30 4.96 6.33 8.20 5.19 13.17 13.21 - 2.97 2.03

Japan 5.44 2.00 3.01 4.56 4.20 4.00 3.41 2.87 2.82 - 4.18
S’pore 2.80 1.88 2.38 3.45 3.22 3.25 2.80 2.27 2.25 4.99 -

Table 2 Average Perceived Bandwidth between sites in MBPS

Parameter Value
Number of parallel TCP Streams 4

Ignore Sub-Phase Di 32MB
Heed Sub-Phase Dh 64MB

Download Sub-Phase Dd 3GB - 64MB =
2.94GB

Table 3Parameters used in the experiment
involves modifying only an in-memory variable which tracks
the byte-offset of the next read or write operation on the file.
Typically, no storage is allocated for byte-offsets within the
hole (which is created while seeking beyond end-of-file).

In order to evaluate coordinated staging, experiments with
three different sources were conducted. The three sources
were: Singapore (site providing the lowest upload rate to other
sites), Alamo (site providing moderate upload rate to other
sites) and UVACSE (site providing the best upload rate to
other sites). For each experiment, the remaining ten end-points
were used as execution-sites. An HTC application consisting
of ten sub-jobs was submitted to a metascheduler placed on
Romulus, a modest host at the University of Virginia. Each
individual job of the HTC application required a single shared
file to be staged-in. The source of this shared file was
Singapore, Alamo or UVACSE depending on the experiment.
The size of this shared file was 3GB or 15GB. The
metascheduler was made to schedule exactly one individual
job onto each execution site. Table 3 lists the parameters used
for the experiments.

Fig. 1 Time taken to seek and write

Figure 2 shows the download time by the sites under all three
studied approaches (normalized to the conventional approach
of downloading from a single source). It is to be noted that all
three approaches employed parallel-TCP. It was observed that
with Singapore and Alamo as sources, every site benefitted
under both unopt-CS and opt-CS. With Singapore as source
the speed-up varied between 1.42 and 3.85, while with Alamo
as source, the speed-up varied from 1.35 to 3.70. Speed-up
was achieved not only because of the availability of faster
peers for download, but also due to lesser bandwidth
contention at the source. With a 3GB source at UVACSE, no
site except Romulus suffered a significant slowdown. With a
15GB source at UVACSE, all sites except Romulus and Alamo
obtained a speed-up. A speed-up of upto 1.56 was achieved.
Typically, the 15GB downloads obtain greater speed-up than
the 3GB ones. This is because a lesser percentage of the
outcalls are spent on exploring, and the penalties of
optimistically assuming a peer to have a file are less severe.

0
50

100
150
200
250

Ti
m

e
ta

ke
n

in
 m

s 0

1G

10G

25G

50G

100G

129

Fig. 3 Comparison of the throughput of the three approaches

Moreover, for the 3GB download under opt-CS, it is possible
for a site to not download a chunk from a closer peer even
though the peer may have already downloaded the chunk. This
is because the chunk size is small enough to be covered by
executing the Explore Phase on a small number of unexplored
replicas. Opt-CS was on average 1.17x faster than the unopt-
CS because the former tries to increase the traffic flowing on
the faster links.

We define the throughput of a download to be the ratio of
the total amount of data downloaded by all the sites to the time
taken for the last site to finish downloading the given (shared)
file. Figure 3 shows the throughput of a 3GB and 15GB file
download under all three approaches, normalized to the
conventional approach. Under opt-CS, the throughput of the
system improved for all the cases. With the slower sources,
both opt-CS and unopt-CS caused an increase in throughput.
Unopt-CS on the 3GB source at UVACSE resulted in a
negligible throughput decrease. It is to be noted that sites
which finish downloading earlier can be simultaneously
executing the job (using files from the working directory) and
be providing shared files to peers (from the cache directory).

Site Purge Policy
TACC Lonestar 10 days
TACC Ranger Deletion on full filesystem
PSC Blacklight 7 days
Purdue Steele 90 days

IU Quarry 60 days
NCSA Forge 4 days for files >= 10GB, else 14 days
NICS Kraken 30 days

Table 4 Scratch space purge policy heterogeneity amongst a few
XSEDE sites

VII. RELATED WORK
The idea of using downloaders as uploaders has been used

in peer-to-peer systems like in the BitTorrent protocol [26].
However, there exist differences between the two systems.
Firstly, in our system, all the peers start downloading at
almostthe same time. Secondly, the churn-rate is very high in
peer-to-peer systems while the peers in our environment are
more stable. The metascheduler performs the task of the
Tracker in BitTorrent by helping downloaders find each other.
In both systems, peers can become prospective seeders.
BitTorrent uses a choking technique to prevent free-riding.
The metascheduler prevents free-riding to an extent by
preventing those BES' which do not incorporate the FSS EPR
from obtaining peer knowledge. We assume that all peers are
cooperating to achieve a common goal and assume no
malicious peers.

The state-of-the-art production grids [16, 27, 28] typically
advertise a manual approach for file transfer via scp or
GridFTP [29]. Owing to storage quota constraints in the home
directory at each site, users use a larger shared scratch space.
The heterogeneity in the scratch space purge policy of sites is

0
0.2
0.4
0.6
0.8

1
1.2

Si
er

ra
A

la
m

o
In

di
a

R
om

'u
s

U
D

C
U

va
cs

e
U

K
1

U
K

2
U

K
3

Ja
pa

n

Conventional unopt-CS opt-CS

0
0.2
0.4
0.6
0.8

1
1.2

Si
er

ra
In

di
a

R
om

'u
s

U
D

C
U

va
cs

e
U

K
1

U
K

2
U

K
3

Ja
pa

n
S'

po
re

Conventional unopt-CS opt-CS

0
1
2
3
4

Conventional unopt-CS opt-CS

0
0.2
0.4
0.6
0.8

1
1.2

Si
er

ra
A

la
m

o
In

di
a

R
om

'u
s

U
D

C
U

va
cs

e
U

K
1

U
K

2
U

K
3

Ja
pa

n
Conventional unopt-CS opt-CS

0
0.2
0.4
0.6
0.8

1
1.2

Si
er

ra
In

di
a

R
om

'u
s

U
D

C
U

va
cs

e
U

K
1

U
K

2
U

K
3

Ja
pa

n
S'

po
re

Conventional unopt-CS opt-CS

0
0.5

1
1.5

2
2.5

3
Conventional unopt-CS opt-CS

0
0.5

1
1.5

2
2.5

3
3.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Conventional

unopt-CS

opt-CS

(a) Singapore as source (b) Alamo as source (c) UVACSE as source

Fig. 2 Comparison of the download time of three approaches normalized to the conventional approach for 3GB
file (top) and 15GB file (bottom)

130

the source of most problems in this manual approach. The user
must not only remember if the correct version of his input files
is in the scratch space of a particular site, but also remember
the policies of each site. Table 4 shows the heterogeneity in
scratch space purge policy among a few XSEDE sites. Such
an approach defeats an important use-case of computational
grids - "the user must not think" and should just "submit and
forget" [14].

On the other hand, grid middlewares like GenesisII [23]
and Globus [30] have components like BES [12] and WS-
GRAM [13]. Some of these services support sharing of input
files by jobs at a site. The shared files are deleted once the last
job finishes. Consequently, reuse which is inevitable in
scientific research is not addressed.

ARC [20] is a grid middleware with a cache for handling
file sharing and reuse. However the cached files are readable
only by jobs within the site. Cabinet has a globally visible
cache resulting in both performance and availability benefits.

GridFTP [29] is a file transfer mechanism which also uses
parallel-TCP for mitigating the inherent slowness of TCP. rftp
[31] is a file-transfer tool implemented on GridFTP which
downloads from multiple replicas simultaneously.

Typical staging techniques do not address the possibility of
treating other execution sites as possible replicas. To the best
of our knowledge, this is the first system to employ such a
staging technique. In this paper, each site downloads from
only one peer at a time. But our work can be extended to
download from multiple peers simultaneously, and we leave
that as a future work.

VIII. CONCLUSION
In this paper, we described two techniques for efficiently

managing data in the GFFS- a caching system and a new file
staging technique called coordinated staging. The caching
system aims to achieve a “once is enough” file transfer goal
by preventing re-staging during sharing and reuse of input
files. The main contribution of this work is coordinated
staging which treats execution sites as possible replica-stores.
Two techniques to perform coordinated staging were
discussed: an unoptimistic and an optimistic approach.
Coordinated staging decreased the download time by upto
3.85x, and increased the throughput by upto 2.86x over the
conventional approach of file-transfer from a single source.
Also, the optimistic approach was on average 1.17x better
than the unoptimistic approach.

ACKNOWLDEGMENT
This material is based upon work supported in part by the

National Science Foundation under Grant No. 0910812. This
work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National
Science Foundation grant number OCI-1053575.

REFERENCES
[1] A. Grimshaw et al. “An open grid services architecture primer,” Computer, vol. 42,

pp. 27–34, Feb. 2009.

[2] E. Seidel, TeraGrid 2011 Keynote Address, 2011.
https://www.xsede.org/wwwteragrid/archive/web/tg11/seidel-article.html.

[3] P.-C. Chen, J.-B. Chang, Y.-L. Su, and C.-K. Shieh, “Ondemand data co-allocation
with user-level cache for grids,” Concurr. Comput.: Pract. Exper., vol. 22, pp.
2488–2513, Dec. 2010.

[4] G. Wasson and M. Humphrey, “HPC File Staging Profile 1.0,” tech. rep., Open
Grid Forum, 2010

[5] J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau and M. Livny, “Migratory file
services for scientific applications,” tech. rep., Univ. of Wisconsin, Madison, 2002.

[6] J. Bester, I. Foster, C. Kesselman, J. Tedesco, S. Tuecke, “GASS: A data
movement and access service for wide area computing systems,” 1999.

[7] A. Grimshaw, M. Morgan and A. Kalyanaraman GFFS—The XSEDE Global
Federated File System. Parallel Processing Letters,23(02).

[8] M. Morgan, “ByteIO specification 1.0,” tech. rep., Open Grid Forum, 2006.

[9] M. Morgan, A. Grimshaw, and O. Tatebe, “RNS specification 1.1,” tech. rep.,
Open Grid Forum, 2010.

[10] M. Morgan and A. Grimshaw, Methods in Enzymology, ch. 8. Elseiver, 2009.

[11] J. I. Garzon et al, “End-to-end cache system for grid computing: Design and
efficiency analysis of a highthroughput bioinformatic docking application,” Int. J.
High Perform. Comput. Appl., vol. 24, pp. 243–264, Aug. 2010.

[12] I. Foster et al. “Basic execution service specification 1.0,” tech. rep., Open Grid
Forum, 2008.

[13] WS-GRAM: http://www.globus.org/toolkit/docs/4.0/execution/wsgram/.

[14] E. Huedo, R. S. Montero, and I. M. Llorente, “The GridWay framework for
adaptive scheduling and execution on grids,” Scalable Computing: Practice and
Experience, vol. 6, no. 3, 2005.

[15] A. Anjomshoaa et al, “Job submission description language specification 1.0,”
tech. rep., Open Grid Forum, 2005.

[16] W. Gentzsch et al, “DEISA - distributed european infrastructure for
supercomputing applications,” J. Grid Comput., vol. 9, no. 2, pp. 259–277, 2011.

[17] XSEDE. https://www.xsede.org/.

[18] T. J. Hacker and B. D. Athey, “The end-to-end performance effects of parallel tcp
sockets on a lossy wide-area network,” 2001.

[19] Filesystem in Userspace. http://fuse.sourceforge.net/.

[20] M. Ellert et al. “Advanced resource connector middleware for lightweight
computational grids,” Future Gener. Comput. Syst., vol. 23, pp. 219–240, Feb.
2007.

[21] A. Chervenak et al. “Giggle: a framework for constructing scalable replica location
services,” in Proceedings of the 2002 ACM/IEEE conference on Supercomputing,
pp. 1–17, IEEE Computer Society Press, 2002.

[22] S. Valente and A. Grimshaw, “Replicated grid resources,” in Proceedings of the
2011 IEEE/ACM 12th International Conference on Grid Computing, pp. 198–206,
IEEE Computer Society, 2011.

[23] GenesisII. http://www.genesis2.virginia.edu/.

[24] “Web Services Addressing”. http://www.w3.org/Submission/ws-addressing/.

[25] A. Grimshaw, M. Morgan, and K. Sarnowska, “WS-naming: location migration,
replication, and failure transparency support for web services,” Concurr. Comput. :
Pract. Exper., vol. 21, pp. 1013–1028, June 2009.

[26] B. Cohen, “Incentives build robustness in BitTorrent,” 2003.

[27] TeraGrid. https://www.teragrid.org.

[28] UK National Grid Service. http://www.ngs.ac.uk/.
[29] W. Allcock et al. “GridFTP: Protocol extensions to FTP for the Grid,” 2001.

[30] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,” Int.
J. of Supercomputer Appl., vol. 11, pp. 115–128, 1996.

[31] J. Feng and M. Humphrey, “Eliminating replica selection - using multiple replicas
to accelerate data transfer on grids,” Parallel and Distributed Systems, International
Conference on, vol. 0, p. 359, 2004

131

