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Abstract—With ever expanding datasets, efficient data 

management in grids becomes important. This paper describes 
Cabinet which employs two techniques for efficiently managing 
data in grids- a caching system and a new file staging approach 
called coordinated staging. The caching system is designed based 
on the characteristics of grid applications. Coordinated staging is 
based on the BitTorrent Protocol model and is specifically 
designed for High Throughput Computing (HTC) applications, a 
common use-case for grids. In coordinated staging, each site that 
is assigned to execute an individual job of the HTC application 
treats other execution sites as potential replica-stores. In our 
evaluation, we show that coordinated staging lowered the 
download time of a file by 3.85x, and increased the throughput of 
the download by 2.86x over the conventional approach of file 
transfer from a single source. 

Keywords—grids; file staging; big data; distributed file systems 

I. INTRODUCTION 
Scientific collaborations and the increasing computational 

needs of applications have warranted the development of grids 
[1]. The ability of grids to provide a larger resource pool than 
what is available at a single site has helped solve problems 
previously believed to be intractable. On the other hand, the 
data-size used by applications has been increasing. Seidel [2] 
claims that the data generated each year is greater than the sum 
of the generated-data over all previous years. Thus, managing 
such large amounts of data in computational grids becomes 
important. Researchers are interested in both analyzing this 
data and harnessing the vast computational resources available 
via the grid. The consequence is a situation where the data and 
computation are not collocated, warranting the need for 
efficient data management techniques. 

At the same time, storage is becoming cheaper and the 
amount of storage available for researchers at their campuses 
and supercomputing sites has been increasing. This storage 
space can be used to cache and replicate input files. Caching 
and replication are two traditional techniques for efficient data 
management in distributed systems. This work, Cabinet deals 
with caching in the context of a computational grid. 

Commonly scientists' datasets are located at their 
institutions. Two techniques [3] exist for moving data to the 
compute site (referred henceforth as simply site): pre-staging 
input files [4] and on-demand input file access [3, 5, 6]. Pre-
staging moves all the input files required by a job to the site 
before the job starts running. Typically users have allocations 
indicating the amount of wall-clock time they can use at a site. 
In this approach, no allocations are consumed during stage-in. 

On-demand access recreates the “home filesystem” of the user 
at the site by forwarding read requests to the institutions. 
However, this method suffers a serious limitation. The 
execution time of the application increases as it blocks during 
reads waiting for data to be fetched from "home". As users are 
often charged allocations from the time their job starts 
executing, this method consumes more allocations than pre-
staging. Since allocations are valuable entities obtained via a 
strict peer-review process, it becomes natural for users to prefer 
pre-staging. Consequently, Cabinet deals with the pre-staging 
approach and employs a new technique called coordinated 
staging which makes pre-staging faster. 

The work has been done in the context of the Global 
Federated File System (GFFS) [7]. The GFFS is a web-services 
based file system for grids. GFFS provides an ability for 
campuses, supercomputing centers, industrial centers etc to 
operate under a single, global path-based namespace without 
requiring the data owners and application developers to change 
the way they store and operate on the data. 

In grids, the term resource denotes an implementation of a 
particular service. Since the GFFS is a standards-based 
filesystem, each resource can be understood as an 
implementation of a standard. For example, every file is a 
resource implementing the ByteIO standard [8] and every 
directory is a resource of the Resource Namespace Service [9] 
specification. Being a wide-area distributed filesystem, the 
GFFS suffers from the limitations of the network. The first part 
of this work: coordinated staging treats the GFFS from a 
computational grid's perspective. The second part of this work: 
caching treats the GFFS from both a computational grid and 
data grid's perspective. 

The rest of this paper is organized as follows: Section II 
motivates the problem, Section III describes a new file staging 
technique called coordinated staging, Section IV describes the 
caching system and its working, Section V presents the 
implementation, Section VI shows the evaluation, Section VII 
discusses the related work and Section VIII summarizes the 
work. 

II. MOTIVATION 
In this section, we describe the need for caching and fast 

file staging. For the rest of this section, the following notations 
will be used. Let J be a job submitted by user U. Let F = {F1, 
F2, ... , Fn} be the set of input files required by J, such that F � 
Ø. Let J’ denote a reuse job. A reuse job is defined to be a job 
that is submitted after J finishes execution. Let F' be the set of 
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input files required by J’, and F  F’ � Ø. Let U’ denote any 
user except U. J’ can be understood to belong to U or U’, 
unless stated explicitly. 

A. The Need for Caching 
Caching is important in computational grids for two 

reasons: input files tend to be shared by jobs, and input files 
tend to be reused across jobs. 

1) Sharing: Sharing occurs when a “single job submission” 
consisting of multiple individual tasks, uses a common input 
file(s). Such jobs form a sub-category of high throughput 
computing (HTC) applications [10], which are an important 
use-case of computational grids. HTC applications refer to a 
class of applications which involves users running multiple 
copies of their programs simultaneously with no 
communication between the individual tasks. In such cases, 
we would not want each individual task to stage-in the same 
input file. A single stage-in into the site must occur. An 
example where the same input files get used repeatedly is 
parameter sweep applications. For e.g., Garzon [11] showed 
the effectiveness of caching for a protein docking application. 

2)  Reuse: Reuse may occur for multiple reasons. In some 
cases, users learn input parameters from an initial set of runs. 
Alternatively, a user may modify his algorithm based on the 
initial results. The subsequent “modified” program will use 
the same set of input files and libraries. In other words, trial-
and-error which is inevitable in scientific research results in 
reuse. At times, generating input files could be expensive, 
leading to unavoidable reuse. Reuse can also occur due to jobs 
failing because of programming errors, scripting errors or 
execution node failure. While these are use-cases of input file 
reuse from an individual user or his research group’s 
perspective, some input files like public databases may be 
common across several research groups, creating a greater 
potential for reuse. 

Storage is cheap enough to not hinder the caching and 
replication of input files that are shared and reused, instead of 
copying them across the network many times. 

B. The Need for Fast File Staging 
Despite caching, it is still necessary for files to be staged-in 

quickly (the first time), so that jobs can begin execution. 
Staging may be necessary even during reuse. There are many 
reasons why the reuse-job J’ need not execute on the cached 
site(s) (sites of the initial run J by user U): 

Primarily, the metascheduling algorithms need not always 
be data-aware. For instance, they may take queuing delay and 
the number of available processors into consideration. For 
example, GridWay [14] schedules jobs onto resources using a 
user-specified ranking model. Secondly, scheduling constraints 
may prevent J’ from executing on the cached sites. For 
example, the memory or processor requirements of J’ may not 
be satisfiable by the cached site. Finally, J’ may belong to a 
different user U’, who may not have allocations or permissions 
to run on the cached site(s). 

Hence, given that reuse need not necessarily occur on the 
cached site, a mechanism for fast staging is needed so that jobs 
can begin execution quickly. Moreover, we will also need a 
fast staging mechanism for those files which exist as a single 

copy (i.e those files which have not been cached or replicated). 
This need for fast file staging is addressed by coordinated 
staging. 

III. COORDINATED STAGING 
In this paper, we present coordinated staging, a new 

technique for fast staging, specifically designed for HTC 
applications. In coordinated staging, each site assigned to 
execute a sub-job of the HTC application treats the other sites 
as potential replica-stores. 

To understand coordinated staging, let us first take a look at 
a typical HTC job-submission in grids. The user submits an 
HTC application-description file to a metascheduler [15]. The 
metascheduler parses this file and extracts the description of 
each individual task of the HTC job. 

This description includes among other things, the list of 
files required to be staged into the site for successful execution 
of that (individual) job. The metascheduler assigns each 
(individual) job to a site based on a scheduling algorithm. 
Typically, these jobs run at multiple sites primarily because 
there is a limit on the number of jobs a user can have in the 
local queuing system of a site at any given instant of time. In 
other words, even though the execution-service running at the 
site may interface to a queuing system, the service cannot qsub 
an unbounded number of jobs on behalf of a user. For example, 
the maximum number of jobs that may be queued by a user on 
TACC-Ranger is 50. 

As Cabinet's data-management strategies are employed in 
the context of the GFFS, coordinated staging is designed for 
the common case of the input file stage URI being a GFFS 
path. The common way of staging files which are not cached or 
replicated is for each site to download them from the lone 
copy. This lone copy which is explicitly created by the user (as 
opposed to an implicit creation by caching or replication) is 
called the primary. Such an approach has a big disadvantage: 
all sites fetch only from the primary making it a potential 
bottleneck and this primary may not be “close” to the 
downloading sites. The terms “close” and “far” refer to 
network proximity and bandwidth. 

However, it may be possible that the sinks (sites) are closer 
to each other than to the source(s). For example, in DEISA [16] 
and XSEDE [17] the sites are connected to each other by high 
bandwidth links. In such cases, we would want sites to 
download as much content as possible from one another, as 
they are all downloading the same content. Coordinated 
staging achieves this by making each site that downloads a file 
f treat other sites as potential replica-stores for f.  

To describe how each site treats other sites as potential 
replica-stores, we use the following notation. Let J = {J1, J2, 
…, Jn} be an HTC application, where Ji  (1�i�n) denotes a sub-
job of the HTC application. Let S = {S1, S2, …, Ss} be the set of 
sites available to the metascheduler to schedule jobs on. The 
metascheduler schedules each job Ji onto some site Sj (1�j�s). 
Each job Ji requires some set of files Fi to be staged into Sj for 
successful execution. While scheduling Ji onto Sj, the 
metascheduler also informs Sj about the set of sites who will 
stage-in each file f, where f � Fi. The metascheduler ensures 
that each site which stages-in f sees this same set of sites in the 
same order. As we shall soon see, this order is critical to the 
working of coordinated staging. 
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Let Sf  = { S1, S2, ... , Sk} be the set of sites that will be 
downloading f. The goal of coordinated staging is to maximize 
the traffic on faster peer links (links providing faster download 
rates). Clearly, this warrants some kind of ordering in the way 
the peers download a file. Consequently, each site s � Sf 
queries f and obtains its size sz. This sz amount of contents is 
implicitly partitioned among the Sf sites onto Sf disjoint chunks 
based on the order provided by the metascheduler. For example 
if sz = 400GB and |Sf| = 4, then a vector of the form <(S1, f, 0, 
100GB), (S2, f, 100GB, 100GB), (S3, f, 200GB, 100GB), (S4, f, 
300GB, 100GB)> is constructed by all the sites. Each element 
of the vector is of the form (site, file, offset, size), meaning that 
the site is responsible for downloading size amount of data 
from file starting at offset. This chunk, which each site is said 
to be "responsible for", is referred to as the primary chunk (PC) 
of that site. The PC can be downloaded from the primary or 
replica(s) using the download algorithm, explained in Section 
III-B. The site responsible for the PC is called its master. All 
non-PCs of a master are referred to as secondary chunks (SCs). 
It is important to note that the download order of chunks does 
not matter, as long as they are arranged correctly at the sink. 

The number of chunks for a file f equals the number of sites 
downloading f. Having obtained the PC, each site has to 
download the remaining |Sf|-1 SCs. Each site picks one SC at a 
time and downloads it completely before moving to the next 
one. As we are dealing with big datasets, and the duration of a 
chunk's download is non-trivial, each site following the same 
order of SCs could result in all of them attempting to read from 
that chunk's master (simultaneously). This will limit that site's 
share of bandwidth coming out of the master. This is an 
incarnation of the First Mile Problem. Since the order of the 
download of chunks do not matter, each site shuffles the order 
of the SCs by randomly picking a SC and downloading it to 
completion. Each SC is downloaded like the PC using the same 
download algorithm but by also including that SC's master as a 
potential replica (to explore) and the perceived bandwidth 
knowledge with the primary or replicas from any previous 
chunk's download associated with f. We refer to this approach 
as unoptimistic coordinated staging (unopt-CS). The case for 
files of non HTC applications  becomes a special case for 
coordinated staging with no peers. 

A. Optimistic coordinated staging 
We have also created an extension to unopt-CS called 

optimistic coordinated staging (opt-CS). Since the order of 
chunk download has been randomized, it is possible for a site’s 
peer who can provide a better download rate than the chunk's 
master or primary, or replicas to have already downloaded that 
chunk of interest. Consequently, opt-CS extends unopt-CS 
wherein each SC is downloaded using the download algorithm 
by (optimistically) including all the peers provided by the 
metascheduler as potential replicas.  An attempt to read from a 
potential replica that has not yet downloaded the required 
content will result in a fault being returned. Such a site will no 
longer be considered as a potential replica for the download of 
that chunk (not the file). 

B. The Download Algorithm 
The goal of our download algorithm is to reduce the time 

taken by a sink to download a chunk that has been replicated. 

An advantage of this algorithm is that it does not use any 
explicit services for network monitoring or forecasting. Before 
explaining the algorithm’s working, we first introduce the 
phases and the sub-phases of the algorithm: Explore 
Phase(EP), Download Phase(DP), Unchoke Phase(UP), 
Ignore Sub-Phase(ISP) and Heed Sub-Phase(HSP). 

1) The Phases and Sub-phases of the algorithm: 

Ignore Sub-Phase (ISP): It is the first step of EP and UP 
(explained below). In this sub-phase, the sink downloads Di 
amount of data from a replica without noting its perceived 
bandwidth. The goal here is to warm-up the disk or filesystem 
caches at the source, so that comparisons can be made by 
reads in EP and UP with warmed-up reads of DP. 

Heed Sub-Phase (HSP): It is a sub-phase of all three phases. 
Here, the sink downloads Dh amount of data from a replica 
and notes its perceived bandwidth. The connection and caches 
are warmed-up before this sub-phase is invoked. 

Explore Phase (EP): This phase is run on those replicas about 
whom the sink wants to acquire knowledge on its perceived 
bandwidth. This phase starts with the ISP for warm-up 
purposes. ISP is followed by HSP, where the actual 
knowledge on perceived bandwidth is acquired. 

Download Phase (DP): In this phase, the sink downloads 
from a replica identified to be the fastest via exploration or 
unchoke. This fastest replica is called the chief replica. This 
phase has two sub-parts. During the larger first sub-part, Dd 
amount of data is downloaded from the chief replica without 
noting the perceived bandwidth. It is different from the ISP in 
the following ways. While the goal of ISP is to warm-up, this 
sub-part is a consequence of that replica being the fastest. 
Secondly, Dd is much larger than Di of ISP. The second sub-
part is HSP. The bandwidth perceived in HSP is used in UP. 

Unchoke Phase (UP): Since the perceived bandwidth with a 
replica is time-variant, each sink periodically selects a replica, 
and checks if it offers better bandwidth than the chief replica. 
This phase starts with the ISP to warm-up the chosen replica. 
The ISP is followed by the HSP, where the bandwidth offered 
by this chosen replica is noted. If this bandwidth is greater 
than the chief replica's bandwidth noted during its DP, then 
the unchoked replica becomes the new chief replica. 

2) Methodology 
 The inputs to the algorithm are: the starting byte offset to 
download, the last byte offset to read, an exploration set 
(represented by En) denoting the set of sources about whom the 
(invoking) application has no knowledge about the perceived 
bandwidth, and an explored set (represented by Ed) denoting 
the set of sources about whom the (invoking) application has 
knowledge about the perceived bandwidth. 

The algorithm begins by first running EP on each replica 
of En. The replica offering the best bandwidth among those in 
Ed and En becomes the chief replica. The remaining replicas 
are said to be choked. Next, the DP is run on the chief replica. 
After the DP is complete, the replica at the head of the choked 
list is removed. This replica is called the unchoked replica. UP 
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is run on this unchoked replica to see if it offers better 
bandwidth than the chief replica. If it does not, the DP is once 
again run on the chief replica. If it does, then the chief replica 
is appended to the choked list, and the DP is run on this new 
chief replica. This sequence of DP-UP-DP continues until the 
entire chunk is downloaded. 

C. Improving Single File-Transfer Speed via Parallel-TCP 
To improve the download speed from a single replica, we 

employ the proven technique of parallel TCP [18] in which 
multiple TCP streams are used to download from the source to 
mitigate the underlying slowness of TCP.  On the other hand, 
a common way for users to access files on the GFFS is via 
FUSE [19]. Consequently, we also modified the GFFS-aware 
FUSE-driver to use parallel-TCP. 

IV. THE CACHING SYSTEM 
 In this section, we explain the working of the caching 
system. Before looking at the working, we shall explain how 
the execution-site is organized to perform caching. 

A. Compute-site Architecture 
 A private working-directory is associated with each 
individual job. This directory is wiped out when the job 
completes. In existing implementations, the input files required 
by the job are staged into this directory. Besides the working-
directory, there is a cache directory which stores the cached 
input files. This architecture is similar to the one used in the 
ARC grid middleware [20]. We next explain how re-stage-in is 
prevented during sharing and reuse. 

B. Sharing 
For this prototype implementation, we assume that input 

files are not modified by jobs during execution. This 
assumption is made because currently there is no standard way 
[15] of denoting such read-only input files. In order to detect 
sharing, the sites require a way to identify individual jobs of 
an HTC application. Consequently, the metascheduler 
generates a unique identifier for every HTC application. All 
individual jobs of a given HTC application have the same 
identifier. If multiple individual jobs are scheduled onto the 
same site, only one of the jobs will stage-in the shared input 
file to its working directory. The remaining jobs will create 
hard-links to this location. Creating links within the working 
directory of jobs of a single HTC application ensures that if 
any user incorrectly specifies his file to be read-only, then 
only his jobs get affected. If a job requires a certain file f, but 
other jobs of the same HTC application (at that site) requiring 
f have completed execution, then a link cannot be created. The 
staging is then treated like a reuse (explained below) by 
downloading f on a cache-miss. 

C. Reuse 
One of the goals of the caching sub-system is to prevent 

"big" input files from being staged-in during reuse. In order to 
achieve this, whenever a site stages in an input file, it caches 
that file. Only files with sizes greater than a certain caching 
threshold are cached. Small files are not cached for two 
reasons - owing to their small size they can be quickly re-

staged during reuse. Moreover, even if individual jobs of an 
HTC application require the same file, a re-stage-in can be 
prevented (as explained in Section IV-B). In ARC, cached 
contents are visible only to jobs running on that site. However, 
Cabinet makes cached files globally visible. This results in 
both availability and performance benefits. 

At the same time, the bigger input files generally tend to 
be read-only. This is because scientific datasets (representative 
of the "big" input files) are typically of the write-once-read-
many type [21]. Data is collected using sensors, telescopes etc, 
released to the public, and then become effectively immutable. 
Typically, a write corresponds to a completely new version of 
the dataset being created. As a result, this globally visible 
cached file is treated as a read-only replica (R-only replica) 
which accepts reads from any client (subject to access control) 
but does not permit writes by anyone. Since a write generally 
corresponds to newer version of the file being created, we do 
not propagate changes on the primary or any non read-only 
copy (referred henceforth as read-write replica or RW-replica) 
of the file for three main reasons: a) There is no guarantee that 
the new version will be used before being evicted, b) To 
accommodate the update, other cached files might get evicted, 
which could result in unnecessary restaging (during reuse), 
and c) Simply destroying the cached-copy on an update 
notification results in simpler cache management. 
Consequently, the RW-replica notifies the R-only replicas of 
an update. The cached-copy destroys itself, when it receives 
this invalidation message. The details of the working are 
explained in Section IV-E. It is to be noted that the terms 
cached file and R-only replica mean the same. 

D. Write vs Update 
We first define the terms write and update with respect to 

a replica. A write on a read-write replica R means a user 
performed an explicit write on that replica. An update on a 
read-write replica R means a user performed a write on some 
replica R' (R' � R), and R' propagated the write to R. 

We next explain how the caching sub-system works to 
handle both reuse and global visibility of cached files. 

E. Methodology 
Once a decision has been made to cache an input file, the 

site first creates an empty cached-copy in the cache-directory. 
Since the cached copy will be globally visible, it is important 
to ensure that, if a replica is inaccessible to some user U, then 
the cached copy should also be inaccessible to U. 
Consequently, the (empty) cached-file subscribes to one of the 
RW-replicas to notify it on any access control change, and 
then sets its access control to that of the RW-replica. Next, the 
cached copy subscribes to all RW-replicas of the file for both 
writes and updates. It is necessary to subscribe to both writes 
and updates because the consistency model employed in 
GFFS is eventual consistency [22]. In our notification scheme, 
the publisher stores the notification message in persistent 
storage until it has been acknowledged (by the subscriber). 
After successful subscription, the R-only replica becomes 
globally visible for reads, and asynchronously downloads the 
contents (via coordinated staging). Any attempt to read a 
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section of the file that has not yet been downloaded, results in 
a fault being returned. 

Since storage is a finite entity, a replacement algorithm is 
associated with caches. In our caching system, when the 
amount of storage used reaches a High Water Mark, files are 
evicted using a simple Least Recently Used algorithm until a 
Low Water Mark is reached. 

V. IMPLEMENTATION 
In this section, we explain how the caching sub-system and 

coordinated staging are implemented in GenesisII [23]. 
GenesisII, a web service standards-based grid middleware, is 
the first realization of the GFFS. Since GenesisII and GFFS 
are both standards-based, we first overview a few standards 
that helps understand the implementation better. 

A. Standards 
WS-Addressing Endpoint references (EPRs) [24] are a 

standard way to represent and address web service endpoints 
(namely resources). One of the elements of the EPR is the 
Metadata. The Metadata element contains extra information 
about the resource that can be used by clients as hints. 

WS-Naming [25] extends WS-Addressing by providing 
means for transparent failover, replication (or caching) and 
migration. Since EPRs cannot be compared, they cannot be 
used as a cache key. WS-Naming addresses this limitation by 
providing means to uniquely "name" a resource via an 
Endpoint Identifier (EPI). This EPI is embedded within the 
Metadata of an EPR. For example, when a file (ByteIO 
resource) is replicated, all replicas have different EPRs but 
share the same EPI. WS-Naming also states that associated 
with each resource can be a resolver, which stores the EPR of 
the primary and replicas of that resource. When queried with 
an EPI, the resolver returns an EPR from this set, thus 
providing a way to achieve transparent failover. 

The Basic Execution Service (BES) [12] describes a 
standard way for creating, monitoring and controlling jobs at 
execution sites. Depending on the implementation, a BES may 
execute the job on a single computer, a cluster interfaced by a 
queuing system, the cloud etc. 

B. Caching and Coordinated Staging Implementations 
Coordinated staging treats each site as a potential replica-

store. Consequently, there needs to be a way for peers to 
address and read from replicas in this replica-store, Hence, 
each BES resource incorporates within the Metadata of its 
EPR, the EPR of another service called the Fast Stager 
Service (FSS). FSS behaves like a resolver by matching a 
given EPI with the set of EPRs in that replica-store, and 
returns the EPR corresponding to the replica. How the FSS 
builds this set of EPRs is explained later. It is to be noted that 
no access control check is performed by FSS. All 
authentications are performed by the replicas themselves. 

We next explain how each site acquires the FSS EPR of 
other sites. Complying with the BES standard, to create a job 
on a BES, the metascheduler makes a Create Activity call on 
that BES passing an Activity Document describing the job. 
Inside the xsd:any element of the Activity Document, the 

metascheduler inserts the peer knowledge - i.e for each file f 
required by the activity, the metascheduler inserts the FSS 
EPRs of those sites who will also stage-in f. The HTC 
application identifier is also inserted within the xsd:any 
element. At the site, each individual job takes the help of the 
Stager Manager and Download Manager for staging-in. 

The Stager Manager(SM) prevents re-stage-in during 
sharing by tracking the files staged-in (or being staged-in) by 
the sub-jobs of a HTC application, and their corresponding 
working directory paths. If a job requires a file f that has 
already been staged-in (or is being staged-in) by another job of 
the same HTC application, then SM creates a hard-link to that 
job's working-directory location of f. Files which cannot be 
linked are sent to the Download Manager for download. 

The Download Manager(DM) interacts with the cache and 
performs coordinated staging. In our current implementation, 
only cacheable files undergo coordinated staging. In other 
words, this means the “replica-store” of a site is actually its 
cache. The DM first downloads those files for which that site 
has to behave like a peer in coordinated staging. This is done 
by looking at the Activity Document. Before downloading a 
file f, the DM checks the cache using the f’s EPI as the cache-
key. On a cache-miss, the DM creates an empty ByteIO 
resource [8] (corresponding to f and having the same EPI as f), 
and sets up subscriptions as explained in Section IV-E.  

The DM registers this ByteIO EPR with the local FSS, 
making f addressable by the peers. The DM partitions f into 
chunks equaling the number of FSS EPRs for f in the Activity 
Document. The DM identifies its primary chunk by comparing 
the EPI in the FSS EPR of the BES (associated with the job it 
is downloading) with the EPIs within the FSS EPRs associated 
with f in the Activity Document, and downloads it into the 
cache. Next, all the (randomized) secondary chunks of f are 
downloaded using coordinated staging. In unopt-CS, the DM 
asks the FSS EPR associated with the chunk's master (inferred 
from the Activity Document) for its local ByteIO EPR 
corresponding to the EPI of f. This EPR is treated as a replica 
while downloading that secondary chunk. In opt-CS, the DM 
asks the masters of all secondary chunks for their local ByteIO 
EPR corresponding to the EPI of f. These EPRs are treated as 
replicas for each secondary chunk. After downloading a 
cacheable file completely, its EPR is registered with the 
resolver (if one exists) making it visible beyond the peers. The 
file is then copied from the cache to the working directory of 
that job. 

VI. EVALUATION 
The experimental setup consisted of eleven geographically 

distributed sites. Table 1 describes the configuration of each 
site. Table 2 shows the average bandwidth perceived by each 
site with every other site. 

In coordinated staging, each site "chunkifies" the file to be 
staged-in, and downloads chunks of the file in a random order. 
This results in seeks and writes to arbitrary offsets. We first 
evaluate the overhead of writing to random offsets of an 
empty file. Figure 1 shows that the overhead of seeking is 
negligible and the time taken to write at an arbitrary seek 
offset is nearly constant. This is because seeking generally  
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Execution site Machine Type Cache filesystem type 
Texas Advanced Computing Center (TACC) - Alamo CentOS 5.7 ext3 mounted via NFS 

San Diego Supercomputing Center - Sierra Red Hat Enterprise Server 5.8 ZFS mounted via NFS 
Indiana University – India Red Hat Enterprise Server 5.8 ext4 mounted via NFS 

University of Virginia CS - Romulus Ubuntu 10.04 ext3 mounted via NFS 
University of Virginia CSE - UVACSE Ubuntu 12.04 ext4 

University of Virginia University Datacenter - UDC Ubuntu 10.04 ext4 
Amazon Small Instance UK Availability Zone 1a – UK1 Amazon Linux AMI ext3 

Amazon Small Instance UK Availability Zone 1b – UK2 Amazon Linux AMI ext3 
Amazon Small Instance UK Availability Zone 1c – UK3 Amazon Linux AMI ext3 

Amazon Small Instance Japan Amazon Linux AMI ext3 
Amazon Small Instance Singapore – S’pore Amazon Linux AMI ext3 

Table 1 Experiment Pool 

          Sink   
Source 

Sierra Alamo India Romulus UDC Uvacse UK1 UK2 UK3 Japan S’pore 

Sierra - 4.42 6.83 6.91 10.69 7.18 3.25 2.81 2.07 4.96 2.93 
Alamo 8.53 - 8.10 6.93 8.26 6.82 4.19 3.79 3.26 3.30 2.24 
India 9.01 5.20 - 7.49 17.10 7.56 4.93 4.82 4.47 3.15 2.40 

Romulus 9.93 6.22 5.42 - 22.73 34.28 4.19 3.66 3.42 2.42 2.32 
UDC 12.44 7.81 5.70 9.17 - 9.12 4.90 3.53 3.47 2.69 2.22 

UVACSE 10.54 11.16 16.15 70.95 36.44 - 7.73 6.17 5.57 3.57 2.72 
UK1 4.45 2.44 5.06 6.39 8.61 5.73 - 13.49 13.47 2.98 2.18 
UK2 4.41 2.32 4.92 6.29 8.14 5.19 12.99 - 13.16 2.96 2.16 
UK3 4.41 2.30 4.96 6.33 8.20 5.19 13.17 13.21 - 2.97 2.03 

Japan 5.44 2.00 3.01 4.56 4.20 4.00 3.41 2.87 2.82 - 4.18 
S’pore 2.80 1.88 2.38 3.45 3.22 3.25 2.80 2.27 2.25 4.99 - 

Table 2 Average Perceived Bandwidth between sites in MBPS 
 

Parameter Value 
Number of parallel TCP Streams 4 

Ignore Sub-Phase Di 32MB 
Heed Sub-Phase Dh 64MB 

Download Sub-Phase Dd 3GB - 64MB = 
2.94GB 

Table 3Parameters used in the experiment 
involves modifying only an in-memory variable which tracks 
the byte-offset of the next read or write operation on the file. 
Typically, no storage is allocated for byte-offsets within the 
hole (which is created while seeking beyond end-of-file). 

In order to evaluate coordinated staging, experiments with 
three different sources were conducted. The three sources 
were: Singapore (site providing the lowest upload rate to other 
sites), Alamo (site providing moderate upload rate to other 
sites) and UVACSE (site providing the best upload rate to 
other sites). For each experiment, the remaining ten end-points 
were used as execution-sites. An HTC application consisting 
of ten sub-jobs was submitted to a metascheduler placed on 
Romulus, a modest host at the University of Virginia. Each 
individual job of the HTC application required a single shared 
file to be staged-in. The source of this shared file was 
Singapore, Alamo or UVACSE depending on the experiment. 
The size of this shared file was 3GB or 15GB. The 
metascheduler was made to schedule exactly one individual 
job onto each execution site. Table 3 lists the parameters used 
for the experiments. 

 
Fig. 1 Time taken to seek and write 

Figure 2 shows the download time by the sites under all three 
studied approaches (normalized to the conventional approach 
of downloading from a single source). It is to be noted that all 
three approaches employed parallel-TCP. It was observed that 
with Singapore and Alamo as sources, every site benefitted 
under both unopt-CS and opt-CS. With Singapore as source 
the speed-up varied between 1.42 and 3.85, while with Alamo 
as source, the speed-up varied from 1.35 to 3.70. Speed-up 
was achieved not only because of the availability of faster 
peers for download, but also due to lesser bandwidth 
contention at the source. With a 3GB source at UVACSE, no 
site except Romulus suffered a significant slowdown. With a 
15GB source at UVACSE, all sites except Romulus and Alamo 
obtained a speed-up. A speed-up of upto 1.56 was achieved. 
Typically, the 15GB downloads obtain greater speed-up than 
the 3GB ones. This is because a lesser percentage of the 
outcalls are spent on exploring, and the penalties of 
optimistically assuming a peer to have a file are less severe.  

0
50

100
150
200
250

Ti
m

e 
ta

ke
n 

in
 m

s 0

1G

10G

25G

50G

100G

129



 
 

 
 
 
 
 
 

 
Fig. 3 Comparison of the throughput of the three approaches 

Moreover, for the 3GB download under opt-CS, it is possible 
for a site to not download a chunk from a closer peer even 
though the peer may have already downloaded the chunk. This 
is because the chunk size is small enough to be covered by 
executing the Explore Phase on a small number of unexplored 
replicas. Opt-CS was on average 1.17x faster than the unopt-
CS because the former tries to increase the traffic flowing on 
the faster links.  

We define the throughput of a download to be the ratio of 
the total amount of data downloaded by all the sites to the time 
taken for the last site to finish downloading the given (shared) 
file. Figure 3 shows the throughput of a 3GB and 15GB file 
download under all three approaches, normalized to the 
conventional approach. Under opt-CS, the throughput of the 
system improved for all the cases. With the slower sources, 
both opt-CS and unopt-CS caused an increase in throughput. 
Unopt-CS on the 3GB source at UVACSE resulted in a 
negligible throughput decrease. It is to be noted that sites 
which finish downloading earlier can be simultaneously 
executing the job (using files from the working directory) and 
be providing shared files to peers (from the cache directory). 

 
 
 

Site Purge Policy 
TACC Lonestar 10 days 
TACC Ranger Deletion on full filesystem 
PSC Blacklight 7 days 
Purdue Steele 90 days 

IU Quarry 60 days 
NCSA Forge 4 days for files >= 10GB, else 14 days 
NICS Kraken 30 days 

Table 4 Scratch space purge policy heterogeneity amongst a few 
XSEDE sites 

VII. RELATED WORK 
The idea of using downloaders as uploaders has been used 

in peer-to-peer systems like in the BitTorrent protocol [26]. 
However, there exist differences between the two systems. 
Firstly, in our system, all the peers start downloading at 
almostthe same time. Secondly, the churn-rate is very high in 
peer-to-peer systems while the peers in our environment are 
more stable. The metascheduler performs the task of the 
Tracker in BitTorrent by helping downloaders find each other. 
In both systems, peers can become prospective seeders. 
BitTorrent uses a choking technique to prevent free-riding. 
The metascheduler prevents free-riding to an extent by 
preventing those BES' which do not incorporate the FSS EPR 
from obtaining peer knowledge. We assume that all peers are 
cooperating to achieve a common goal and assume no 
malicious peers. 

The state-of-the-art production grids [16, 27, 28] typically 
advertise a manual approach for file transfer via scp or 
GridFTP [29]. Owing to storage quota constraints in the home 
directory at each site, users use a larger shared scratch space. 
The heterogeneity in the scratch space purge policy of sites is 
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Fig. 2 Comparison of the download time of three approaches normalized to the conventional approach for 3GB 
file (top) and 15GB file (bottom)

130



the source of most problems in this manual approach. The user 
must not only remember if the correct version of his input files 
is in the scratch space of a particular site, but also remember 
the policies of each site. Table 4 shows the heterogeneity in 
scratch space purge policy among a few XSEDE sites. Such 
an approach defeats an important use-case of computational 
grids - "the user must not think" and should just "submit and 
forget" [14]. 

On the other hand, grid middlewares like GenesisII [23] 
and Globus [30] have components like BES [12] and WS-
GRAM [13]. Some of these services support sharing of input 
files by jobs at a site. The shared files are deleted once the last 
job finishes. Consequently, reuse which is inevitable in 
scientific research is not addressed. 

ARC [20] is a grid middleware with a cache for handling 
file sharing and reuse. However the cached files are readable 
only by jobs within the site. Cabinet has a globally visible 
cache resulting in both performance and availability benefits. 

GridFTP [29] is a file transfer mechanism which also uses 
parallel-TCP for mitigating the inherent slowness of TCP. rftp 
[31] is a file-transfer tool implemented on GridFTP which 
downloads from multiple replicas simultaneously. 

Typical staging techniques do not address the possibility of 
treating other execution sites as possible replicas. To the best 
of our knowledge, this is the first system to employ such a 
staging technique. In this paper, each site downloads from 
only one peer at a time. But our work can be extended to 
download from multiple peers simultaneously, and we leave 
that as a future work. 

VIII. CONCLUSION 
In this paper, we described two techniques for efficiently 

managing data in the GFFS- a caching system and a new file 
staging technique called coordinated staging. The caching 
system aims to achieve a “once is enough” file transfer goal 
by preventing re-staging during sharing and reuse of input 
files. The main contribution of this work is coordinated 
staging which treats execution sites as possible replica-stores. 
Two techniques to perform coordinated staging were 
discussed: an unoptimistic and an optimistic approach. 
Coordinated staging decreased the download time by upto 
3.85x, and increased the throughput by upto 2.86x over the 
conventional approach of file-transfer from a single source. 
Also, the optimistic approach was on average 1.17x better 
than the unoptimistic approach. 
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