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Abstract
The last decade has seen a considerable increase in the

number of sensors we interact with on a daily basis. How-

ever, it is not always possible for a single sensing system

to capture the complete story. While statically mounted in-

frastructure sensors typically capture the what, where, how

much etc aspects of a detected event , e.g. ( what appli-

ance was used, how much energy did it consume), they do

not always answer the who question. On the other hand,

the advent of wearables has helped answer the what and

who aspects - e.g. (who used the appliance). Fusing such

sensor streams that observe the same event but different

attributes of it, opens up many interesting applications. In

this paper, we present a globally optimal data fusion algo-

rithm for such pairs of systems, and show why traditional

bipartite algorithms do not work. We evaluate our algorithm

against two greedy baselines and show that our algorithm

has lesser variance in the presence of time skew, false pos-

itives and false negatives.
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Introduction
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Figure 1: Data Fusion needs to be

performed between the static

sensing system (SS1) and

personal sensing system (SS2) in

the presence of ordering

differences, false positives, false

negatives and timestamp

differences

It is reported that nearly 50% of the world’s population live

in cities, and this value is expected to be 70% by 2050 [15].

With such high concentration of population in cities, there is

a growing need to build cities that cater to the needs of the

people, improve their quality of life and make optimal use

of public resources. On the other hand, the last decade has

also seen a proliferation of sensors we interact with on a daily

basis. For e.g., in 2013 it was estimated that over 17.2 bil-

lion smart home devices alone were sold worldwide. It is

believed that such sensing devices will become so common-

place that there will be around 50 billion sensors by 2020 [11].

SS1 

SS2 

9 

10 

11 

11.5 

12 

12 12.7 

Min-cost maximal bipartite matching Ideal matching 

Figure 2: Timelines showing

min-cost maximal bipartite match

resulting in crossing matches per

person during False Positives &

Negatives. Each shape represents

a unique event type

However it is not always possible for a single type of sensor

system to capture the complete story. For instance, statically

mounted sensors can capture information on the "what, how

much, where" aspects, but not answer the personalization

question of who triggered the event - e.g. what appliance

was used, how much water was consumed etc. We refer to

such a system as the static sensing system. On the other

hand, the growth in identity-mounted wearables like Fitbit,

smart watches etc, and activity recognition techniques us-

ing these wearables [9], have helped answer the what and

who aspects - e.g. who used the fixture and what appliance

was used. We call this system as the personal sensing sys-

tem. Consequently, we have multiple non time synchronized

heterogeneous sensors with time-stamping errors, each ob-

serving the same event (what fixture was used) but having

different attributes (who used the fixture v/s how much en-

ergy did it consume?). Performing data fusion on the com-

mon observed event in such time skewed static-personal sen-

sor streams opens up many useful applications (e.g. Bob

consumed 100W when he used the microwave). The chal-

lenge in such fusion is the temporal ordering of the observed

events in the two streams, the presence of timestamp differ-

ences, false positives (FPs) and negatives (FNs). Figure 1

shows an example of how events can show up in the two

timelines. We present three diverse motivating smart-city ex-

amples warranting such fusion, later in this paper - (a) an en-

ergy apportionment application that can provide people with

a city-level energy footprint, (b) a meta-research tracking ap-

plication to evaluate tracking accuracy by comparing against

ground-truth and (c) an automatic dietary monitoring appli-

cation to help obesity control, a growing problem in cities.

The systems under fusion have two main properties which

prevent applicability of traditional bipartite matching algorithms

- (a) All observed events in the static sensing system have

global time ordering (e.g. energy disaggregation techniques

which sense the electrical mains), and (b) In the personal

sensing system timeline, all events of a given identity are

temporally ordered, but there is no event ordering across

identities (e.g. If each person carries a smartwatch, all de-

tected appliance usages of a person are in order, but there is

no global time-ordering across persons). Any matching be-

tween the two systems must adhere to these properties. Tra-

ditional bipartite algorithms [8, 3, 16] violate these properties

as they have no notion of per-identity ordering and simply

maximize the matches at the lowest cost. Consequently, they

can cause crossing matches for a given person. An example

for such a crossing is shown in Figure 2. A crossing rep-

resents an ordering contradiction between the two systems-

for e.g. SS1 says Bob used the Fridge(SS1:11) before the

Oven(SS1:12), while the crossing match implies that SS2

says he used the Oven(SS2:11.5) before the Fridge(SS2:12).

Consequently, we present a new globally optimal algorithm

which performs data fusion on such static-personal sens-

ing streams. We first augment a naive combinatorial ap-

proach with an optimal pruning strategy and show that such

an approach still consumes unnecessary computational re-

sources. We address this limitation via a Divide and Con-

quer approach resulting in an asymptotic of O(|P1| * |P2| * ...
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|Pn|), where |Pi| is the number of events of the ith identity in a

sub-problem. We compare our algorithm against two greedy

baselines and show that despite time skews, FPs and FNs,

we exhibit much lower accuracy variance.

Motivating examples
We motivate the need for a fusion algorithm between static-

personal sensor systems with the following examples:

Our first example is motivated by the work of Ranjan [12].

Homes are one of the major energy consumers in a city, us-

ing up nearly 40% of the total US energy budget [1]. Pro-

viding personalized energy feedback to residents can po-

tentially reduce 20-50% of a home’s energy usage. Build-

ing such an application requires answers for - "What fixture

was used? How much energy did it consume? Who used

it?". Non Intrusive Load Monitoring (NILM) [5] techniques

help disaggregate fixture usages by monitoring the mains,

thus answering the first two questions - viz (Oven, 100W,

12:30pm). A second wearable-based system that recognizes

fixture usages via IMU sensors mounted on the hands of the

user (like a smartwatch) answers - "what fixture was used,

and who used it?" - viz (Oven, Bob, 12:31pm). We see that

the two systems observe the same event (Oven) but differ-

ent attributes of it (Bob v/s 100W). Performing data fusion

on the common Oven usage event results in our desired en-

ergy apportionment tuple - (Bob, Oven, 100W) denoting "Bob

consumed 100W by using the Oven". Extending such an ap-

plication to all buildings in a city, can help provide individuals

with a detailed city-level energy footprint.

Our next use-case of performing data fusion on the same ob-

served event is a case of meta-research motivated by Hnat [6].

Here the events of a room-level tracking system under test

and a ground truth system need to be matched for accu-

racy evaluation purposes. The tracking system is mounted

on every doorway and tracks people based on heights, as

they move between rooms. Ground truth for such systems is

typically collected by people recording their room transitions

on phones. Both systems observe the same event (doorway

crossings) but different attributes (height v/s person). Accu-

racy is evaluated by comparing what tracking thought hap-

pened on each event against the corresponding matched

phone event. For e.g. if tracking says someone went from

Bedroom to Hallway, but the matched ground truth says the

opposite (Hallway to Bedroom), then tracking was inaccurate

on that event. While we motivate on a tracking use-case in

homes, such a study can also be performed for tracking in

public places like museums (or) envisioned for futuristic ve-

hicular tracking wherein say, the magnetic field of the car is

measured as a biometric in each intersection, and ground

truth is collected via GPS mounted on cars.

Our third static-personal data fusion use-case is in the realm

of smart-living with automatic dietary monitoring. Obesity,

touted by the World Health Organization as the ‘21st century

epidemic‘, is an important problem for cities to deal with as

over 33% of adults living in urban United States are obese [2].

One of the main causes for obesity is the lack of proper quan-

titative methods to measure energy intake [14], with self-

reporting of food consumption suffering from reporting-error

and low adherence. Consequently, there has been a growing

need for automatic dietary monitoring. Performing data fu-

sion on the works of Kranz [7] and Moncada-Torres [10] does

the same. Here, the static sensing system is Kranz’s micro-

phone system which uses acoustic data to detect the food

item being cooked -e.g. (Apple, cutting, 12:30pm). The per-

sonal sensing system of Moncada-Torres consisting of IMUs

detects the same cooking event but has an identity attribute

to it - e.g. (Bob, cutting, 12:31pm). Performing data fusion on

the commonly observed cooking event can help with dietary

monitoring by saying (Bob, cutting, Apple). All three applica-

tions warranting data fusion have a generic set of properties
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which we next explain as the Matching problem.

Matching problem
The common characteristics between the aforementioned use-

cases can be generalized as follows:

SS1 

SS2 

7 

8 

8 8.5 

9 9.1 

Crossing-free bipartite matching Ideal matching 

Figure 3: Timelines showing

crossing free bipartite match

eliminating valid crossings across

persons. Both (8, 9.1) and (8.5, 9)

can match

1. There are 2 sensing systems (SS) observing the same

set of discrete events (e.g. appliance usage or door-

way crossing) but having different attributes (e.g. en-

ergy consumed vs identity using).

2. Each SS is an infinite time-series that is not in time-

sync with each other.

3. One of the SS has notion of identity (e.g. person or

car). There is a per-identity time-ordering of events in it

(e.g. if each person carries a smartwatch, all detected

appliance usages of a person are in order, but there is

no global time-ordering across persons).

4. All events are globally ordered in the other SS. (e.g.

NILM timeline where fixture usage events are disag-

gregated by monitoring the mains)

5. Each SS may observe events which the other doesn’t

see - i.e false positives and false negatives occur.

6. An event in one SS can only be matched with the same

event in the other SS. For e.g. a NILM disaggregated

Microwave event can match with a gesture recognized

Microwave event but not a Fridge event.

SS1 

SS2 

5 

7 

8 

10 

12 

15 

Doorjamb bipartite matching Ideal matching 

Figure 4: Timelines showing

Doorjamb matching minimizing

total cost instead of maximizing

associations resulting in incorrect

(8, 7) and (12, 10) matchings

Our goal is to find a globally optimal valid matching between

the two SS so as to maximize the number of matches, such

that the total cost is minimum. While we use the time differ-

ence between each association as the mapping cost in this

paper, we point out that the cost could be set by the appli-

cation as well. Ordering constraints enforced by properties

(4) and (5) result in the following matching restriction: "there

can be crossing matches across identities, but no crossing

matches for a given identity". This is because a crossing

match denotes an event-ordering contradiction between the

two systems. For e.g., in Figure 2, SS1 says Bob used the

Fridge(SS1:11) before the Oven(SS1:12), while the crossing

implies that SS2 says he used the Oven(SS2:11.5) before

the Fridge(SS2:12). It is this matching constraint that pre-

vents direct applicability of traditional bipartite matching al-

gorithms to our problem. The solid lines in Figures 2, 3 and

4 show examples of valid matching assignments.

Related Work
Considerable literature exists on minimum cost maximum bi-

partite matching [8, 3, 16]. However, as mentioned before

such algorithms aren’t applicable here as they cause cross-

ing matches for a given identity. At the other end, algorithms

for crossing free maximum bipartite matching have been pro-

posed by Fredman [4] and Widmayer [17]. However, these

algorithms eliminate valid crossings across persons too. Fig-

ure 3 shows an example of valid crossings getting eliminated

during timestamp errors. A greedy solution to this prob-

lem has been used in Doorjamb[6]. Here, after sorting all

matches by weight, each edge from this sorted list is re-

moved in-order and added to a final list if it is a valid match.

The criteria to minimize total cost rather than maximize as-

sociations makes such an algorithm undesirable. Figure 4

shows an example of incorrect matching during time skews,

arising due to total cost minimization.

Approach
In this section, we start with a naive brute-force algorithm

and expose its limitations. We then explain an optimal prun-

ing strategy to address them. However, such an approach

still maintains a lot of unnecessary matches that consume

needless computational resources. We then explain how to

address this limitation via a Divide And Conquer technique.
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Before we describe the approach, we first define our nota-

tions. Let SS1 and SS2 be the static and personal sens-

ing systems respectively whose events need to be matched.

As mentioned before, there is global event ordering in SS1

and per-identity event ordering in SS2. Let SSki denote the

ith event in the kth sensing system SSk. Finally, let ε be

the maximum time skew between the two systems -i.e. any

event in one system must have it‘s corresponding match in

the other atmost ε time units away. Having defined our nota-

tions, we describe our algorithm by first explaining the limita-

tions of the Naive algorithm.

Naive MHT algorithm:
The Naive approach is a variant of Reid‘s Multiple Hypoth-

esis Tracking (MHT) [13] wherein a list of all possible valid

matchings between the two systems are generated. Each

such sequence of valid matching is called a hypothesis. An

(SS1i, SS2j) matching is valid if the events SS1i and SS2j

are identical, |timestamp(SS1i) - timestamp(SS2j)| ≤ ε, and

the addition of the matching results in no crossing match per

person in that hypothesis. Finally, the hypothesis having the

most associations at a minimum cost is chosen.

Figure 5 shows an example of the progression of the Naive

algorithm. In this figure, each level of the tree represents an

event being observed, and the path from root node to any

node at a given level represents a hypothesis. In this ex-

ample, event (a) can potentially be matched to events (d),

(e), (f) [as they are all within the time window] or (a) could

be a false positive (φ). Each of these cases represents a

hypothesis. Upon observing the next event (b), hypothesis

(a→d), progresses as (a→d, b→e), (a→d, b→f) and (a→d,

b→ φ). Note that (b→d) isn‘t a valid match, since (d) has

already been associated with (a) by this hypothesis. Finally,

that hypothesis which has the maximum number of associ-

ations with a minimum cost is chosen. It can be seen that

such an approach is computationally not tractable as the hy-

d

........

e f

e f fd e d e f

f ee f

After event (a):

After event (b):

After event (c):

SS1 

SS2 

a b c 

d e f 

w y 

x z 

P1 P1 P1P2 P2

Figure 5: Progression of MHT for first three SS1 events - (a), (b)

and (c). Each level represents an SS1 event being observed. The

path from root to any node represents a hypothesis. Circles show

the SS2 event matched with the observed SS1 event. For e.g.

circle (d) in level 1 denotes an a→d hypothesis. φ denotes a False

Positive. Squares represent the state of that hypothesis. All

like-colored squares represent hypotheses in the same state.

(Figure best viewed in color)

pothesis space grows quickly, resulting in the maintenance

of an exponential number of hypotheses. This exponential

explosion warrants the need for hypotheses pruning.

Naive MHT with Optimal Pruning:
Looking at Figure 5, it is seen that besides storing the as-

sociations, each hypothesis also stores its last matched SS2

timestamp of each person. We refer to this as the state of

a hypothesis. For example, in Figure 5, hypothesis (a→d,

b→e) and hypothesis (a→e, b→d) are in the same state

(d,e). We point out that: Two hypotheses in the same state

will behave identically moving forward. This can be explained

as follows : let H1 and H2 be two hypotheses in the same
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state. Upon a new event SS1i in SS1, the validity of the

(SS1i, SS2j) mapping will be the same in H1 and H2. This is

because since both H1 and H2 are in identical state (i.e the

last associated timestamp of each person are the same), a

crossing match in H1 will cross in H2 too.

Given this intuition that two hypotheses in the same state will

progress identically, we define an optimal pruning condition

that maintains only one of them - "if two hypotheses are in the

same state, then we only retain the ‘better‘ hypotheses." We

say H1 is better than H2 if: (1) the number of associations in

H1 is greater than H2, and (2) If the number of associations

are equal, H1 has a lower cost than H2.

Such a pruning strategy is optimal because if two hypotheses

are in the same state, and one of them is better than the

other (say H1 is better than H2), then the hypotheses forked

out of H1, will always be better than those forked out of H2. In

our example, after observation (b), hypothesis (a→d, b→e)

and hypothesis (a→e, b→d) have the same state. Moving

forward, (a→d, b→e, c→X) will always be better than (a→e,

b→d, c→X), for any valid X. This is because (|d-a| + |e-b|) <

(|d-b| + |e-a|). Consequently the hypothesis (a→e, b→d) can

be pruned after event (b). The MHT algorithm after pruning

now maintains O(|P1| * |P2| * ... |Pn|) hypotheses, where |Pi|

is the number of events of the ith identity in SS2.

The Divide And Conquer Approach:
However, such an approach still maintains a lot of unneces-

sary hypotheses. For e.g., in Figure 5, it can be seen that

after event (c), the set of hypotheses which exist will include:

{ [(a→d), (b→e), (c→ φ)], [(a→e), (b→d), (c→ φ)], [(a→d),

(b→f), (c:→ φ)] ... } . These hypotheses will be worse than

the [(a→d), (b→e), (c→f)] hypothesis (according to the com-

parison function defined previously). More importantly, any

hypotheses forked from the above list will always be worse

than those forked from [(a→d), (b→e), (c→f)]. We can say

this with certainty because no event ≥ (w) can potentially

match with an event ≤ (f). Consequently, in this example

[SS1 = {a,b,c} , SS2={d,e,f}] and [SS1 = {w,y} and SS2={x,z}]

can be treated as two independent sub-problems.

The question now becomes : "How to partition the given

matching problem into sub-problems such that each sub-

problem can be solved independent of the rest?". For this,

we need to identify a disjoint collection of ({SS1}, {SS2})

events-set tuples such that no SS1 event outside of any given

tuple can potentially match itself with an SS2 event within the

same tuple.We refer to this requirement as the tuple exclu-

siveness requirement. Each such tuple is an independent

matching problem by itself. This is achieved using a Dynamic

Programming technique with the following recurrence equa-

tions such that all events between two consecutive ‘True‘

is_end become part of the same sub-problem:

For each event i in SS1:

cum_max(i) = max(cum_max(i− 1), SS1(i).max_ss2), i > 0

cum_min(i) = min(cum_min(i+ 1), SS1(i).min_ss2), i > 0

is_end(i) = True, if cum_max(i) < cum_min(i+ 1)

= False, else 0 ≤ i < |SS1| − 1

The recurrence is explained as follows, for every event i in

SS1: cum_max(i) keeps track of the maximum SS2 event

matchable by any SS1 event preceding i (including itself).

cum_min(i) keeps track of the minimum SS2 event match-

able by any SS1 event following i (including itself). Conse-

quently, is_end(i) will be True for the ith SS1 event only when

all events upto i can only potentially match with an SS2 event

that occurs strictly before any SS2 event matchable by all

events succeeding i. Under such circumstances, events fol-

lowing i can be part of a separate sub-problem, as they abide

by the tuple exclusiveness requirement.
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This technique of identifying sub-problems and running MHT

+ Pruning within each, results in maintenance of O(|P1| * |P2|

* ... |Pn|) hypotheses, where |Pi| is the number of events of

the ith identity in a sub-problem. This is a significant reduc-

tion from the previous MHT + Pruning algorithm.
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Figure 6: Median accuracy for

varying Doorjamb skew with no

FPs - Greedy algorithms show high

accuracy variance. This is because

greater the skew, higher the

likelihood finding a local optima
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Figure 7: Median accuracy for

varying Doorjamb skew with 20%

FPs - All algorithms suffer an

accuracy drop. G-opt has lower

accuracy variance.
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Figure 8: Median accuracy with

time skew, 20% FP and 10%FN -

All algorithms suffer an accuracy

drop as only the phone system

observes the event. G-opt still has

lower variance

Experimental setup
We evaluate our algorithm with a Doorjamb [6] (DJ) like setup

with 2 persons walking around a home with a smartphone.

As they moved between rooms, they clicked on their phone

indicating the doorway of transition, and the direction of move-

ment. Each recorded event is of the form (Timestamp, Door-

way, Person, Direction). An identical second timeline is cre-

ated for the DJ system. We empirically study the effect of

time skew by offsetting DJ timestamps by -10 to 10 seconds.

Consequently, we set ε, the maximum time skew between

the two systems to be 10 seconds. We vary the false pos-

itive (FP) percentage as 0 and 20% of phone events. We

generate FPs according to a uniform distribution - i.e an FP

is equally likely to occur between any pair of DJ events. We

set the FP timestamp to the middle of the two surrounding

events. The doorway of the FP is randomly chosen between

the doorways of the two surrounding events. We study the

effect of False Negatives (FNs) by removing 10% of phone

events. FNs are chosen uniformly - i.e. each phone event

is equally likely to be a FN in DJ. In all, a total of 100 trials

was performed. In this setup, there were 11 doorways in the

house, and a total of 438 doorway crossing events.

Our metric of interest is Matching Accuracy calculated as

the fraction of phone transition events correctly matched with

its DJ event. We compare our globally optimal matching al-

gorithm, G-opt against two baselines which adhere to the

aforementioned Matching problem properties.

1. Greedy Closest Match: Moving in increasing time or-

der, each DJ event is matched with its closest event for

the same doorway in the phone system, such that no

crossing occurs for a given person.

2. Greedy Min Cost: We use the greedy algorithm of

Hnat [6], which was described in our Related Work.

Evaluation
Figures 6, 7 and 8 show the median matching accuracy of

the three matching algorithms in the presence of skew, FP

and FN. We see that G-opt has far lower accuracy vari-

ance than its greedy counterparts despite skew, FPs and

FNs. The greedy algorithms suffer a greater accuracy dip

with skew because larger skews result in a higher likelihood

of finding a closer incorrect match (local optima). We ob-

serve that Greedy Closest Match has a bias if the skew is

opposite to the direction of traversal. We see all algorithms

suffer an accuracy drop with FPs. This is because skews can

cause the FP to be incorrectly paired with the phone event,

as it may be closer in time. The Greedy Closest Match has a

lower accuracy dip during a negative skew despite FPs be-

cause (a) skew has no effect since traversal is in increasing

time order, and (b) the injected FP must choose the suc-

ceeding event’s doorway to cause an accuracy drop. In both

Greedy Min Cost and G-opt choosing either events’ doorway

can lower accuracy. All algorithms suffer an accuracy drop

with FNs as only the phone system observes the event.

G-opt suffers the most slowdown (i.e maintains the most

hypothesis) when the same event is performed by multiple

people within ε, the maximum time skew between the two

systems. Consequently, each event in SS1 can potentially

match to the events caused by each person in SS2, result-

ing in an exponential number of hypothesis. Figure 9 shows

a sensitivity analysis varying the count of persons causing

the same event within ε, and seeing the runtime. We see

that G-opt’s runtime is negligible for upto 13 persons. Even

for a higher count of 15 identities, the runtime is still around
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5minutes only. The runtime of the greedy algorithms are al-

ways negligible. However, with such large number of persons

within ε, greedy algorithms’ accuracy will suffer as there is

greater likelihood of finding the local optima.
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Figure 9: As the number of

persons performing the same event

within ε (the maximum time skew

between the two systems)

increases, G-opt‘s runtime remains

negligible for as high as 13

persons. The runtime of the greedy

algorithms are always negligible.

SP1:SP2

event ratio
% Speedup

100 : 0 110

90 : 10 151

80 : 20 240

70 : 30 398

60 : 40 558

50 : 50 631

Table 1: Speedup of Divide And

Conquer approach over just MHT +

pruning for a 100 event sample.

Smaller the difference in number of

events between two sub-problems,

greater the speedup because each

sub-problem maintains a lesser

number of hypothesis.

Table 1 shows the benefit of performing Divide And Conquer

by comparing its runtime over just MHT + pruning. Given

a set of 100 events, we varied the number of events within

each sub-problem, starting from all events in one and none

in the other, and ending with an equal split of events. We

noticed that smaller differences in number of events between

two sub-problems results in greater speed-up due to the main-

tenance of lesser number of hypotheses.

Conclusion
In this paper, after motivating on three diverse use-cases,

we present a new globally optimal data fusion algorithm for

static-personal sensing systems. The algorithm builds over

an MHT approach with an optimal pruning strategy. Such a

technique still maintains several unnecessary matches that

needlessly consume computational resources. We address

this limitation via a Divide And Conquer technique which re-

sults in the maintenance of O(|P1| * |P2| * ... |Pn|) hypothe-

ses, where |Pi| is the number of events of the ith identity in a

sub-problem. Our results also show that our globally optimal

algorithm has lesser variance than two greedy counterparts

in the presence of time skew, false detections and missed

detections. We believe that such a fusion algorithm will be-

come more important with time, as more diverse sensors get

deployed for smart city applications.
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