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Abstract—Many homes today are logically or physically
“zoned” based on properties such as HVACs, activities, or
physical layouts. Accurately sensing the occupancy of these zones
can yield energy savings, aid in automatic heating and lighting
control, energy disaggregation, etc. Existing systems that attempt
to sense occupancy are power consuming, non real-time, pet
unfriendly and/or sensitive to ambient heat, light and air flow. In
this paper, we address these by building Doorpler, a time, space
and power-aware radar-based system that detects occupancy at
zone transition points by sensing crossings and their direction.
It detects a crossing via the Doppler Principle, and infers the
direction of crossing by measuring the angle-of-arrival of the
human reflection. We evaluate Doorpler by conducting a scripted
study and two in-situ studies for 200 hours, collecting over 1600
doorway crossings. We obtain a precision, recall and direction
accuracy of over 99% in the scripted studies, and over 95% in
the in-situ studies. Our results estimate that Doorpler can fall
in the energy-harvestable range of indoor environments with an
average power consumption of 6.1mW. With an execution time
of 13.8ms, Doorpler has the potential to enable several real-time
smart home applications like smart-lighting and HVAC control.

Index Terms—Smart Homes, Radar, Wireless Systems, Occu-
pancy Sensing

I. INTRODUCTION

Many homes today are logically or physically “zoned” —

based on HVACs [1], tasks performed (rooms), physical layout

(floors), etc. A sensing technology that can accurately sense

this zone occupancy can obtain energy savings (in the order

of 20-30% [2]), perform automatic lighting control (i.e. lights

automatically come on when one enters a room, and goes

off during an exit in real-time — just like a human would

do), aid in energy disaggregation in 35 million single-person

households in the US [3], perform elderly monitoring in the 13

million elderly single-person households [4], and help carry

out “eyes-off” security (e.g. when a person exits a home

through the back door, an unlocked front door locks itself).

The most common off-the-shelf solution for zone occupancy

that exists in homes is a motion sensor. However, a single

motion sensor has no notion of direction (i.e. it cannot

distinguish between a zone crossing and a nearby hover).

Furthermore, these motion sensors infer zone exit from lack of

motion. Consequently, occupied periods can be mis-classified

as unoccupied (“the waving hand at motion sensor problem”),

and zone exit events become non real-time. On the other

hand, many doorway tracking systems exist in literature [5]–

[9] that can sense zone occupancy at zone transition spots

(e.g. doorway) by detecting a crossing and the direction of

movement. However, these systems are high-power [6]–[9],

cannot distinguish between a near-door event (e.g. hover) and

a real crossing [5], [7], [8], are pets unfriendly [5], [8], [9], or

depend on the ambient lighting, air flow or temperature [10],

[11]. Consequently, in this paper we ask the question, how

can we build a system that can perform crossing detection

and direction estimation at low-power (in a harvestable range

as most zone transition spots such as doorways do not have a

nearby power outlet), in real-time and with a small form-factor

(since space is at a premium in a doorway), while addressing

the above limitations.

To answer this question, we build Doorpler, a radar-based

sensing system that performs crossing detection and direction

estimation using the simplest radio frequency (RF) signal,

namely a tone (a continuous wave at a constant frequency),

while adhering to the time, space, and power constraints of

the application. Doorpler is mounted atop a zone transition

spot such as a doorway, and detects a crossing by leveraging

the Doppler Effect — a person walking towards the radar

causes an increase in the frequency of the transmitted signal. It

estimates the direction of crossing by computing the angle-of-

arrival (AoA) of the signal reflected by the human. It leverages

the intuition that a person walking through the doorway

creates a few “good” reflections where they reflect directly

towards the radar [12], and ensures that these reflections are

not inundated by the “bad” multi-path reflections coming off

the environment. However, unlike many conventional radar

direction finding systems which consume time, space, and

power [13]–[17], Doorpler is real-time, space-efficient, and

power-aware (i.e. within harvestable range). As there is a

coarser requirement on the angular accuracy (i.e. we need

to differentiate whether the angle of arrival of the human

reflection is positive or negative depending on the side of

the doorway), Doorpler employs an FFT-based technique

that trades angular accuracy for computational complexity

and relies on the phase difference between pairs of receiver

elements. Doorpler operates these receiver elements in the

5.8GHz ISM band which allows for a compact array size

of 7.8cm. Finally, since the interesting crossing events are

sparse, Doorpler saves power via a dual-band wake-up radio

technique [18], [19]. Accordingly, a lower frequency 2.4GHz

radar (and hence lower power) is used for crossing detection,

while a triggered higher frequency 5.8GHz (and hence higher

power) array performs direction estimation.

To evaluate Doorpler, we study its accuracy, power con-
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sumption and real-timeness. We first conducted a scripted

study with 8 participants of varying height and weight who

were asked to walk through an instrumented doorway in

different ways, every day for 6 consecutive days, producing

over 1400 doorway crossing events. Our results show that

Doorpler can achieve a precision, recall and direction accuracy

of over 99% accuracy. Next, we performed two in-situ studies

for 200 hours, on an instrumented doorway in a lab and

a 2-person home, generating nearly 250 crossings. Despite

the uncontrolled environment, Doorpler achieves an average

precision, recall and direction accuracy of 98.7%, 95.4% and

100%, respectively. Next, we estimate that a realization of

Doorpler when instrumented atop a doorway would consume

6.1mW of power, falling in the harvestable solar range for

indoor environments [20]. To evaluate the real-timeness of the

system, we implemented the digital baseband processing on an

ultra-low power microcontroller. Our results show an execution

time of 13.8ms, thus having the potential to enable several

real-time smart home applications like smart-lighting, HVAC

control.

II. RELATED WORK

At a high-level, Doorpler performs real-time crossing de-

tection and direction estimation at zone transition spots, such

as doorways (we use the terms zone transition spots and

doorways interchangeably). It operates at low-power using just

a 100μW tone. Doorpler is inspired by existing works in radar-

based direction finding systems, doorway tracking systems and

indoor RF-based localization systems.

Radars: Radars have long been used to detect targets and

their direction by analyzing the reflections of a transmitted

signal [21]. However, many of these solutions [22] cannot be

directly applied to our use-case, as these systems tend to be

space-heavy [13]–[15] (i.e. we want Doorpler to have a form-

factor that fits onto a doorjamb whose width can be as small

as 10cm [23]) or time-heavy [16], [17] (i.e. we want Doorpler
to be real-time). Examples of space-heavy techniques include

Time Difference of Arrival [13], Amplitude-based AoA [14]

which require a large antenna separation such that RF path

loss difference can be used to determine the direction - a

spatial luxury unavailable atop a doorway. On the other hand,

time-heavy techniques include those that have a large scan-

time [24] or employ subspace techniques [16], [17] that are

computationally heavy to run in real-time on an ultra low

power microcontroller.

Like other continuous-wave (CW) radar systems, Doorpler
also works by analyzing the reflections of a transmitted tone

signal. However, it adheres to the space, time and power-

constraints of the use case. It only requires a coarser angular

accuracy (i.e. whether the angle of the reflection from the

human is positive or negative depending on the doorway

side) in estimating the direction of transition. Consequently,

it employs an FFT-based technique that isolates the reflection

from the crossing human and trades-off angular accuaracy for

computational complexity. The coarse nature of the angular

accuracy also eliminates the need for large phased arrays,

a common space-heavy direction finding solution [15]. The

coarseness also permits Doorpler to transmit at very low-

power and work with low sampling rates.

Secondly, radars employ different techniques to mitigate di-

rect path interference such as delayed sampling (pulse radars),

shadowing or beam-steering [25]. In contrast, Doorpler em-

ploys a technique by orienting the nulls of the omni-directional

transmit and receive antennas towards each other (i.e. antennas

point at each other so that the antenna gains mismatch).

Consequently, most of the energy is radiated downwards into

the doorway, and the direct path is weakened.

Finally, Doorpler identifies the moment a person crosses

the doorway via a technique inspired by Doppler and pseudo-

Doppler direction finders [26]. In such systems, an RF trans-

mitter is localized by a rotating receiver – there will be positive

Doppler when the receiver is rotating towards the active

RF source, and negative while moving away, with the zero-

crossing informing the direction of the RF source. Doorpler
uses a similar technique but instead of a rotating radio, it

leverages the moving human. A person crossing the doorway

causes positive and negative Doppler during approach and

exit respectively. The zero-crossing thus tells Doorpler when

the person was underneath the sensor, creating a temporal

reference for AoA comparison.

Doorway Tracking Systems: Several doorway tracking

systems have been built that can perform crossing detection

and direction estimation [5]–[10]. However, these systems

either consume high power [6]–[10] (i.e. outside a harvestable

limit), are not highly accurate in direction estimation [5],

[8], are pet unfriendly (ultrasonic sensors) [5], [9], cannot

distinguish between movements near the doorway and door-

way crossing events [5], [7] or make assumptions about the

heat profile of a human [10], [11]. The current state-of-the-

shelf system that is commonly deployed in rooms of homes

and offices for our use-case are motion sensors. However, a

single motion sensor cannot provide a direction estimate, and

movements near the sensor can trigger false positives. Further-

more, these motion sensors are also not real-time, particularly

during exit-events (i.e. lack of motion for a period of time is

perceived as an exit). Since lack of motion is perceived as exit,

occupied periods get mis-classified as unoccupied (“the hand-

waving at motion sensor problem”). Finally, motion sensors

can also get triggered by external factors such as sunlight, car

lights (if used in exterior doorways) or HVAC air flows [27]

(a limitation even if they are placed on either side of the

doorway). Doorpler mitigates the above limitations of both

state-of-the-art and state-of-the-shelf systems by using the

phase and amplitude of low-power RF signals that cause no

harmful effects, distinguishes near-door events from crossing

events, and is independent of the lighting, air flow or the heat

profile of the person.

RF-based Indoor Localization: Several device-based sys-

tems exist that can localize a person indoors with high

accuracy using RF signals [28]–[33]. However these systems

require a person to carry a device — an issue in homes due to

the documented forget to wear, forget to charge problem [34].
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Fig. 1: The envelope of the Doppler signal reflected back to Doorpler
during a doorway crossing (a peak in the figure) is much larger than
that in the absence of a crossing. There are 12 crossings in this figure.

Furthermore, these systems typically analyze the (strongest)

direct path, while Doorpler is concerned about the weak

reflected path coming from the human. There exist systems

that use WiFi or Frequency Modulated Continuous Wave

(FMCW) radar signals [35]–[38] to localize people in a device-

free manner. However the power consumption of these systems

is typically higher than CW systems [39], [40] because (i) a

CW system is a subset of these systems, (ii) of the lower band-

width of usage, (iii) of WiFi Orthogonal frequency-division

multiplexing’s (OFDM) high peak-to-average-ratio [41], (iv)

of lack of any protocol overheads (WiFi). Furthermore, as

FMCW systems sweep a much larger bandwidth, they are also

more prone to interfering RF sources. Finally, we add that

systems that use sonar for person or finger localization [42],

[43] are also subject to the pet unfriendly limitation like the

ultrasonic doorway tracking systems.

III. APPROACH

Doorpler is a radar-based system mounted atop the door-

way. It performs crossing detection and direction estimation

using only an RF tone. It detects a crossing by leveraging

the Doppler effect – i.e. the receiver observes a shift in

the transmitted frequency due to human motion. It estimates

the direction of human transition by computing the angle-of-

arrival (AoA) of the reflection coming from the human onto

an antenna array. To realize this, Doorpler takes a layered

approach owing to a space-power tradeoff. Accordingly, a

lower frequency of operation results in a lower power con-

sumption [44]. However, a lower operating frequency also

results in a large antenna array that can out-span the door (as

the array size depends on the wavelength [15]). In other words,

Doorpler wants to transmit at a low frequency for power sake

but also at a high frequency for spatial benefits. To handle

this trade-off, Doorpler uses a technique called dual-band
wake up radio [18], [19] by operating at two different ISM

bands (2.4GHz and 5.8GHz). The lower power 2.4GHz radio

performs crossing detection and triggers the higher power

5.8GHz array for direction estimation, only when a crossing

is detected. We next explain the design details of Doorpler.

Fig. 2: A positive Doppler shift followed by a negative Doppler shift
can occur not only when a person walks through the doorway (cases
(i) and (ii), but also due to other movements near the doorway such
as hovers and U-turns (cases (iii) - (vi)).

A. Crossing Detection

In order to detect a crossing event, Doorpler
relies on theDoppler Effect. Accordingly, when a target moves towards

the receiver during a radio transmission, the target acts as

a virtual transmitter by reflecting the transmitted signal with

a frequency larger than the transmitted frequency. This phe-

nomenon is referred to as the Positive Doppler Effect
. We next

describe how this Positive Doppler is leveraged by
Doorpler.Doorpler uses a 2.4GHz RF transmitter which transmits a

carrier signal that is given by [45]

x(t) = A cos(2πfct)
(1)

where A is the transmit signal magnitude and f
c represents

the carrier frequency of 2.4GHz. This transmitted signal prop-

agates through air and is received by an antenna placed at the

other end of the doorway. This received signal is given by [46]

y(t) = ηA cos(2πfc(t− τ))
(2)

where η is the attenuation factor, and τ represents the prop-

agation time. However, the transmitted signal does not travel

along just one path from the transmitter to the receiver. The

transmitted signal gets reflected by the objects in the environ-

ment resulting in multiple copies of the same signal arriving

at the receiver. This is referred to as multipath propagation
,

and the super-imposed received signal at the receiver due to

the N propagation paths is given by

y(t) =

N∑

i=1

ηiA cos(2πfc(t− τi))
(3)

where ηi and τi represent the attenuation factor and propaga-

tion time for the ithpath. Now, when a person walks towards

the doorway during such a radio transmission, she will reflect

a signal which will arrive at the receiver with a frequency (
fc’)larger than the transmitted frequency. This is given by

y′(t) = ηA cos(2πf ′
c(t− τ))

(4)

This frequency difference (Δf) between the transmitted (
fc)and received frequency (fc’) is referred to as the Doppler shift

.
The Doppler shift caused by a target moving at velocity

v at
an angle θ relative to the receiver, is given by [47]

Δf =
2 ∗ fc ∗ v ∗ cosθ

c (5)
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Fig. 3: Each receiver computes an amplitude
spectrogram - a measure of the strength of
each frequency component over time. The
faint signal on either side of the baseband tone
shows the Doppler reflections due to a human
walking through the doorway1.

Fig. 4: Each receiver performs spectrogram
enhancement on the amplitude spectrogram
resulting in a more visible Doppler signal,
and baseband tone mitigation.

Fig. 5: The Doppler Power (DP) is a
measure to infer the moment, the person
crosses the sensor. There is positive DP
when the person approaches the doorway,
and negative DP when the person exits.
Hence, the zero-crossing of DP tells us
when the person crosses the sensor.

where fc is the transmitter’s center frequency and c is the speed

of light in the transmission medium. Given a center frequency

of 2.4GHz, and an average human walking speed of 1.2 to 1.3

ms−1 [48], the maximum Doppler shift will be about 21Hz.

Similarly, when the person walks away from the doorway

during an RF transmission, her reflection will arrive at the

receiver with a frequency less than the transmitted frequency,

resulting in a negative Doppler shift.
Doorpler captures the positive Doppler shift in order to

detect a crossing (negative Doppler happens after the person

has crossed the doorway threshold). It does so in two steps.

First, it tries to extract y’(t) from the received signal via a

Butterworth bandpass filter (cutoff frequency of 3 to 25Hz),

such that only the reflection from the human remains. Next,

it obtains the envelope of the filtered signal, and detects

a crossing only when the envelope power is larger than a

threshold (set as 5 times the noise-floor). Fig. 1 shows the

envelope power of the Doppler filtered signal for 12 doorway

crossings. We can clearly see that the envelope power during

a crossing is much larger than that during a crossing absence.

The advantage of this technique is also that both the filtering

and the envelope detection can be performed entirely in analog

at just a few microwatts of power [49], [50].

When a potential crossing is detected, the 2.4GHz sensor

triggers on a higher power 5.8GHz radio array. The 5GHz

radio performs two tasks - (i) direction estimation, and (ii)

crossing confirmation. Crossing confirmation is necessary be-

cause the crossing detected via the above technique by the

2.4GHz radio can result in false positives. This is because

any approaching movement by a person towards the doorway,

when she is close to the doorway can cause positive Doppler.

For example, all cases shown in Fig. 2 will result in positive

Doppler (until the person reaches the line of the receiver),

followed by a negative Doppler. However, only cases (i) and

(ii) are true doorway crossing events. As the above approach

will treat all 6 cases to be true crossing events, the 5GHz radio

is used to filter out these false positive cases.

1 All spectrogram figures are best viewed in color.

B. Direction Estimation

The triggered 5.8GHz receiver-array is used for direction

estimation. We point out that Doorpler cannot simply use

positive and negative Doppler to obtain direction because

irrespective of which side the person crosses the doorway

from, she will cause positive Doppler during approach and a

negative Doppler during exit. As a result, Doorpler estimates

the direction of the person crossing the doorway by calculating

the angle-of-arrival (AoA) of the weak reflected signal coming

off the human. The AoA of this signal will be positive when

the person is on one-side of the doorway, and negative when

the person is on the other side. Finally, Doorpler fuses angle

estimates from multiple (four) antennas in order to improve

the direction estimate. Given this overview, we next explain

the details of Doorpler’s direction estimation.

Upon being triggered by the 2.4GHz radio, each element

of the 5.8GHz array transforms the received multipath-rich

raw time-domain baseband samples into spectrograms via the

Short Time Fourier Transform (STFT). The STFT essentially

employs a sliding window over the received time-domain

samples and then performs a Fast Fourier transform (FFT)

on each window. The resulting spectrogram is essentially a

three dimensional plot representing the frequency domain of

the received signal over time (i.e. x-axis is time, y-axis is

frequency and z-axis is corresponding metric that is analyzed,

namely amplitude or starting phase of the signal). We hence-

forth refer to the spectrogram with an amplitude z-axis as the

amplitude spectrogram, the one with a phase z-axis as the

phase spectrogram, and so on. For example, Fig. 3 shows an

example of an amplitude spectrogram.

Step 1: Compute Amplitude Spectrogram - At first, each

array element computes an amplitude spectrogram (Fig. 3).

Each cell (i,j) represents the power of a certain frequency

component at a given time. The strong signal at the center

of this spectrogram represents the transmitted signal and its

multipath reflections (Equation 3). The thin contour (4 to

6s) around it shows the Doppler reflections (Equation 4)

of a human walking through the doorway. In the frequency

domain, a spectrogram stretches from 0 to S Hz, where S is

the baseband sampling rate. Not all these frequencies are of
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Fig. 6: Each receiver computes a phase
spectrogram indicative of the starting phase
of each frequency component over time.
The phase spectrogram by itself is not very
useful, but phase difference computed on
a pair of antennas reveals useful direction
information.

Fig. 7: If two antennas are separated
by a distance d, then a signal incident
at angle θ, travels an extra distance
of d sinθ to the second antenna. This
results in an instantaneous phase dif-
ference of 2π*d*sinθ/λ between the
two antennas.

Fig. 8: Each receiver pair computes an
angle-of-arrival (AoA) spectrogram on ei-
ther side of the doorway crossing point.
The AoA of the Doppler signal is predom-
inantly negative when the person is on one
side of the doorway, and positive when she
is on the other side.

interest - i.e. we only care about the frequencies around the

transmitted tone frequency where the Doppler shifts occur.

From Equation 5, for an average human walking speed of

1.3m/s during a 5.8GHz RF transmission, this corresponds to

a Doppler shift of about 50Hz. As a result, Doorpler only

considers a “smaller” amplitude spectrogram that is +/- 50Hz

around the transmitted baseband tone frequency (ftone). We

refer to this frequency range as fmin to fmax. This reduces the

computational load on the microcontroller that performs the

digital baseband processing.

Step 2: Perform Spectrogram Enhancement - The

Doppler reflected signals in the frequency bands around the

transmitted tone are extremely faint. Consequently, each re-

ceiver performs spectrogram enhancement [51], [52] on the

aforementioned amplitude spectrogram in order to extract the

weak Doppler signal. This is done by first normalizing the

amplitude spectrogram with respect to each time bin (i.e. a

normalization per column). As a result of this step, the tone-

band will have the highest (unit) magnitude. Next, we subtract

each column (frequency) of this computed spectrogram from

a background column-vector. This background column vector

is computed by averaging a similarly normalized background

spectrogram of 5 seconds (that is computed initially). Conse-

quently now, the tone band gets mitigated, and the Doppler

bands become ”visible”, during motion. Fig. 4 shows an

example of an enhanced amplitude spectrogram (ASenh(f,t)),
and we see the Doppler bands becoming more visible.

Step 3: Identify Zero Crossing - In order to compare

the AoA of the human-reflected signal on each side of the

doorway, Doorpler first determines the moment the person

was at the doorway (i.e. underneath the sensor). It does

so by identifying the point of transition from positive to

negative Doppler (similar to pseudo-Doppler direction finding

radars [26]). It identifies this Doppler transition point by com-

puting a measure called Doppler Power (DP). This measure

is obtained by weighting the power value from the enhanced

amplitude spectrogram with the corresponding Doppler sign

(+1 for positive Doppler bands and -1 for negative Doppler

bands). More formally,

DP (t) =

fmax∑
f=fmin

sign(f)×ASenh(f, t), (6)

where sign(f) =

{
+1, f > ftone (Positive Doppler)

−1, f < ftone (Negative Doppler)
.

(7)

Intuitively, the above is a measure that captures the cumulative

Doppler power (in the frequency bands corresponding to hu-

man motion), factoring in the manner of movement (approach

v/s exit). Via this measure, a person approaching the doorway

causes positive Doppler Power, while a person exiting causes

negative Doppler Power. Hence, if we calculate Doppler Power

over the entire crossing duration, then the zero-crossing would

give us the Doppler transition point. Fig. 5 shows the Doppler

Power during a doorway crossing for one of the antennas. In

this figure, we can clearly see the zero-crossing of interest

around 4.5 second. Doorpler determines this zero-crossing

point via a technique similar to FormaTrack [7]. We denote

this zero-crossing time as Tcross.

Step 4: Compute Phase Spectrogram - Having determined

the moment the person is in the doorway, Doorpler next

determines the direction of transition. As mentioned before,

Doorpler determines direction by computing the AoA of the

human-induced reflection. To measure this AoA, each array

element first computes a phase spectrogram – x-axis is time, y-

axis is frequency and z-axis is the starting phase of the signal.

Fig. 6 shows an example of a phase spectrogram at a receiver,

which appears to reveal little information.

However, as seen in Fig. 7, when two antennas A1 and A2

are placed at a distance d apart, a signal arriving at an angle

θ to the antennas will travel an extra distance of d sinθ to

A2. This additional distance results in an instantaneous phase

difference [28] between the two antennas of Δφ = 2∗π∗d∗sin∗θ
λ ,

where λ is the carrier wavelength (=5.17cm for a 5.8GHz

signal). When d is half-wavelength (λ/2), the AoA is given by

θ = arcsin
Δφ

π
(8)
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Fig. 9: Since Doorpler only cares about
the direction of doorway transition,
each receiver pair quantizes the AoA
estimates to -1, 0 or +1, depending on
the sign of the AoA.

Fig. 10: Doorpler mitigates the effect of sec-
ondary Doppler reflections by fusing AoA
estimates from multiple antenna pairs. It com-
putes a consensus spectrogram where each
quantized AoA cell must be agreed upon by
all antenna pairs.

Fig. 11: Doorpler further reduces the effect of
secondary reflections by weighting the con-
sensed quantization with the corresponding
power value from all the receivers. Conse-
quently, Doppler reflections coming straight
from the human get weighted higher than the
secondary Doppler reflections.

Consequently, Doorpler takes the phase spectrogram for two

successive receivers (i.e.λ/2 apart) , and calculates the phase

difference ( Δφ) between them at every spectrogram cell. This

results in a phase difference spectrogram, for every antenna

pair.

However, the received signal in an antenna is the superpo-

sition of multiple paths, and hence the above equation breaks

down if applied directly on the received signal. To isolate the

reflection from the moving target alone, Doorpler computes

the phase difference only in the Doppler bands (+/- 6Hz to +/-

50Hz from the tone frequency), leveraging the intuition that

the Doppler reflections come from the moving human. We

mitigate the effect of secondary reflections - i.e. transmitter

–> human –> environment –> receiver via Step 7.

Step 5: Compute Angle-of-Arrival (AoA) Spectrogram -
From each computed phase difference spectrogram, Doorpler
next computes an AoA spectrogram based on Equation 8.

Intuitively, it is the AoA of the Doppler induced reflection

(when it exists), for each time step. Next, we leverage the fact

that a person causes positive Doppler while approaching the

doorway, and negative Doppler while exiting. Consequently,

the AoA spectrogram is only computed in the positive Doppler

bands before the person reaches the doorway (i.e. Tcross),

and in the negative Doppler bands after the person exits the

doorway. More formally, given a phase difference spectrogram

Δφsgram , the AoA spectrogram AoAsgram is given by

AoAsgram(f, t) =

{
arcsin

Δφ(f,t)
π

, if (i) f > ftone and t < Tcross

(ii) f < ftone and t > Tcross
0 , else

(9)

Fig. 8 shows an example of an AoA spectrogram. We can see

that the AoA in the Doppler bands are mostly on one-side of

0°before Tcross (around 4.5 seconds), and on the other side

of 0°after Tcross.

Step 6: Obtain Quantized AoA Spectrogram - In order to

determine the direction of doorway transition, Doorpler only

needs to know if the human reflection is at a positive or neg-

ative angle. Consequently, Doorpler quantizes the computed

AoA spectrogram such that the cells with positive and negative

angles are set to +1 and -1 respectively. This results in the

Quantized AoA spectrogram, as shown in Fig. 9.

Step 7: Secondary Reflections Mitigation - In order to

mitigate the effect of secondary reflections coming from the

human, Doorpler fuses data from multiple antenna pairs.

It leverages the intuition that as a person walks through

the doorway, there will be a few “good” reflection points

where the person reflects directly to the radar [12]. With the

antennas located in far-field, all pairs will agree on the angle

quantization at these reflection points. Consequently, Doorpler
forms a consensus spectrogram wherein each cell (i,j) has a

quantized angle only when agreed upon by all receiver pairs.

The consensus spectrogram in Fig. 10 shows a reduction in

the number of bad angle estimates, compared to Fig. 9.

The consensus spectrogram could have certain ‘bad’ cells

which do not agree with the actual direction of doorway

crossing because of noise. However, these noisy cells have

low power if they are not a reflection from the human.

Consequently, we eliminate these noisy cells by weighting

each cell (i,j) of the consensus spectrogram with the corre-

sponding power value obtained by summing the (i,j)th cell

in the amplitude spectrogram of all the antenna pairs. This

step further mitigates secondary reflections as they will have

lower power compared to those coming directly off the person.

Fig. 11 shows the spectrogram after amplitude-weighting

which exhibits a clear difference on the two sides of the

doorway. (amplitude-weighting increases the recall by about

20%). Formally, if CS represents the consensus spectrogram,

and ASn represents the amplitude spectrogram of the nth

receiver, then the resulting amplitude weighted consensus
spectrogram (CSwt) is given by

CSwt(f, t) = CS(f, t) ∗ (
N∑

n=1

AS(f, t)) (10)

, where N is the number of receivers.

Step 8: Sign comparison - Finally, Doorpler determines

the direction of transition by comparing the sum of the sub-

matrices, pre and post doorway crossing (i.e. the left and right

half of CSwt). This weighted sum will change from positive to

negative when the person walks from one side of the doorway

to another, and from negative to positive, when she walks the

other way. More formally, if we define transition from the
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(a) Doorpler was mounted atop
an office doorway. A scripted
study and an 80-hour in-situ
study was performed on this
doorway yielding over 1500
doorway crossing events.

(b) Doorpler was mounted atop
the most commonly used door-
way in a 2-person home for
120 hours yielding 113 doorway
crossing events.

Fig. 12: Experimental Setup

Fig. 13: In the scripted study, participants walked through the
instrumented doorway in 6 different ways yielding 1440 crossings.

positive to the negative side as IN, and vice versa as being

OUT, then the direction estimate is given by

Dir =

{
IN , if

∑

t<tcross
CSwt(f, t) > 0 and

∑

t>tcross
CSwt(f, t) < 0

OUT, if
∑

t<tcross
CSwt(f, t) < 0 and

∑

t>tcross
CSwt(f, t) > 0

Step 9: Crossing Confirmation - As mentioned earlier,

the 2.4GHz radio which performs crossing detection based on

positive Doppler shifts can trigger false positives for near-door

events such as hovers and U-turns. These false positives are

eliminated via the sign comparison in Step 9. If the weighed

sums on either side of the doorway crossing point are both

positive (or) both negative, then Doorpler perceives that the

person did not actually cross the doorway, and discards the

event.

Finally, we also point out that we have a layered ap-

proach (i.e. 2.4GHz triggering on the 5GHz array) because

a 2.4GHz phased array with four antenna elements placed

half-wavelength apart will occupy a total of 18.75cm. This

is longer than most doorjamb widths [23]. A 5.8GHz array on

the other hand occupies a much smaller width spanning just

7.8cm, which can fit atop most doorways.

IV. EXPERIMENTAL SETUP

To test our hypothesis, we implement the 2.4 GHz and the

5.8 GHz RF transceivers using software defined radios. The

Participant P1 P2 P3 P4 P5 P6 P7 P8
Height (cm) 161 167 168 170 172 175 177 181
Weight (kg) 60.8 61.0 56.1 78.0 56.7 97.9 82.5 80.0

TABLE I: The height and weight of the 8 participants who walked
through an instrumented office doorway for 6 days generating 1440
doorway crossing events

2.4 GHz transmitter and receiver were realized by two USRP

N210s [53] with an SBX daughterboard [54] each. The 5.8

GHz transmitter was implemented on a USRP N210 with a

CBX daughterboard [55]. The 4-element 5.8 GHz receiver

array was implemented on a USRP X310 [56] with two

TwinRX daughterboards [57] that provide four phase-coherent

RF receive chains. Each transceiver pair was frequency syn-

chronized via a common reference clock, Octoclock-G [58].

Without frequency synchronization, the Doppler signal gets

submerged in the carrier frequency difference between the

transceivers (Carrier Frequency Offset [59]). The receivers

were time synchronized (sample-aligned) via a pulse-per-

second signal provided by the same Octoclock-G. The 5.8GHz

transmitter loaded a 100 Hz baseband tone on its carrier

whose Doppler was analyzed for both crossing confirmation

and direction estimation. Both transmitters transmitted at just -

10dBm (100μW) transmit power, while the receivers sampled

at 250Hz. Each RF chain was terminated by a 3dBi omni-

directional antenna, and these antennas were mounted atop a

doorway as shown in Fig. 12a and Fig. 12b. The transmit and

receive antennas were mounted in a gain-mismatch fashion

(pointing at each other so that the nulls align). This reduced the

direct path by 10.2dB. The antennas in the 5.8 GHz phased-

array are placed half-wavelength apart (2.58cm).

Finally, there is a constant but repeatable phase-offset

between each of the 5.8 GHz receive-chains due to the

different local oscillators involved. These phase offsets were

eliminated via a one-time calibration [28]. The phase offset if

left uncalibrated, would appear as an added phase difference

in Equation 8, resulting in an incorrect angle estimate. We

performed two sets of studies with this setup :

1. A scripted study was performed on an office doorway

(Fig. 12a), involving 8 participants of varying heights and

weights as shown in Table I. The participants were asked

to walk for 6 days through the instrumented doorway. On

each day, each participant walked 6 times (3 times back and

forth) through the doorway in the 6 ways shown in Fig. 13.

No restrictions were imposed on the type of clothing the

participants wore, or the time of the experiment. In all, this

study yielded 1440 doorway crossings (+ 144 U-turn events).

2. Two sets of in-situ experiments were performed. A first

in-situ study was performed on the same office door for 80

hours which yielded 133 doorway crossings. A second in-situ

study was performed on the most commonly used doorway

in a 2-person home (Fig. 12b). This study was performed for

120 hours, and resulted in 113 doorway crossing events.

The crossings were recorded by a video camera pointed at

the doorway, which were then manually analyzed. We evaluate

Doorpler accuracy via four metrics:

• Recall: The fraction of actual doorway crossings that
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Study
Metric(%) Recall Precision DirAcc EffDirAcc

Scripted 99.0 99.9 100.0 99.6
In-situ 95.4 98.7 100.0 98.0

TABLE II: Doorpler achieves over 99% accuracy across all metrics
of interest in the scripted study. It also achieves an average accuracy
of over 95% across all metrics in the 200 hours of in-situ data.

were correctly detected by Doorpler.
• Precision: Amongst the doorway crossings detected by

Doorpler, the fraction that actually occurred.

• Direction Accuracy (DirAcc): The fraction of correctly

detected doorway crossings having the correct direction.

• Effective Direction Accuracy (EffDirAcc): The crossing

confirmation (Section III-B) depends on the direction

estimate. Consequently, an incorrect direction estimate

can manifest itself as a false negative, false positive or a

direction error. This metric captures this manifestation as

the mean of recall, precision and direction accuracy.

V. EVALUATION

A. Doorpler Accuracy

Table II shows that Doorpler achieved over 99% and 95%

accuracy across all metrics of interest in the scripted and in-

situ study respectively. The missed detections in the in-situ

study are attributable to the following causes: (a) two people

walking one behind the other through the doorway (occlusion),

(b) several cases of people walking all the way up to the door,

talking to someone in the room for a few seconds, and then

continuing motion into the room, (c) direction-errors (i.e. a

true crossing event was incorrectly detected as a U-turn/near-

door event), (d) not all the 5GHz radio chains were triggered

because of the conservative threshold that trades-off precision

and recall, and finally (e) a case of a person located very

close to the doorway, walks through the doorway. In this case,

the positive Doppler received by the 2.4GHz radio was not

significant. The causes for the 3 false detections over the 200

hours of data collection were due to direction errors (i.e. a

U-turn/near-door event was not detected). In all these cases,

the weighted consensus sum on one of the sides was only

marginally greater (or lesser) than zero. We leave it as a future

work to filter out these low-confidence crossing events.

B. Power Consumption

We next study the power consumption of Doorpler. We

cannot take power numbers directly from the USRPs as they

are over-engineered for our use-case. For e.g., the components

in its radio chain (i) operate over a multi-GHz band (while

we operate at a single frequency), (ii) can transmit at over

+10dBm (we transmit 100x lower at -10dBm), (iii) can receive

signals as low as -130dBm (a human reflection 1m away

from the setup comes at -66dBm [60]), (iv) has an ADC

with a sampling rate of 200MHz (we sample at 250Hz), etc.

Consequently, we come up with an equivalent realization of

Doorpler based on the USRP radio chain, and obtain power

numbers of this realization from literature. We leave it as a

future work to engineer the analog integrated system based on

the provided design. Fig. 14 shows a high-level block diagram

of Doorpler’s power hungry RF components with the 2.4GHz

RF chain waking up the 5GHz array upon crossing detection.

2.4GHz radio : Liu et al. [61] built a -10dBm RF front-

end similar to Doorpler for Bluetooth Low Energy, Zigbee

and Medical Body Area Network applications. It consumes

4.6mW for transmission and 3.8mW for reception. However

with shareable components like the oscillator, the power

consumption becomes 6.6mW. In our studies, we observed that

the 2.4GHz radios can be 15% duty-cycled without accuracy

loss. This results in a power-consumption of 5.8mW. We point

out that this system exceeds Doorpler’s necessity. For e.g., the

receiver sensitivity is -96dBm (Doorpler is about -61dBm),

the data rate is over 950Kbps (Doorpler samples at just 250

samples/sec, i.e. 2Kbps), the radio chains support modulation

techniques like GFSK, DQPSK, etc (Doorpler runs on an

unmodulated tone). The envelope detector to trigger the 5GHz

chain can be realized in tens of microwatts of power [49].

Furthermore, we point out that unlike typical transceivers, we

do not require components like the oscillators to be stable

over a long-term (as they are shared between TX and RXs).

Said differently, Doorpler is not drift sensitive, and only cares

about short-term stability (crossing duration).

5GHz RF chain : Similarly, Homayoun et al. [62] built

a 11.6mW receiver for 802.11a applications. With 4 receive

chains, the total power consumption becomes 46.4mW. This

receiver has a sensitivity of -70dBm at 54Mbps, and a noise

figure of 6dB which exceed Doorpler’s requirements. The

transmitter can be realized via a -7dBm, 13.5mW frequency

synthesizer [63], eliminating the need for an on-chip power

amplifier, as the output power is high enough. This results in

a total power consumption of 59.9mW for the 5GHz chain.

Digital Baseband Processing : To measure the power

consumption of the micro-controller unit (MCU), we imple-

mented the digital baseband processing of Doorpler on an

ultra-low power MCU, MSP432 [64], and measured its power

consumption. We observed that the MSP432 consumed 6.4mW

of power. This results in a total power consumption of the

5GHz chain of 66.3mW (= 59.9 + 6.4)mW.

Average power and comparison with other doorway
tracking systems : The average power consumption of Door-
pler is given by (Power Draw of 2.4GHz radio) +
(On Time of 5GHz array)*(Power Draw of 5GHz array). In

our study, we observed that the 2.4GHz radio triggers the

array 0.4% of the time. This results in an average power

consumption of 6.1 (=5.8 + (0.4% * 66.3)) mW.

Table III compares the power consumption of the triggered

component of Doorpler with other doorway-tracking systems.

We report the power numbers this way as all of these systems

can technically be triggered by the 2.4GHz radar, even though

it is not part of their setup. From this table, we observe that the

triggered component of Doorpler consumes 2.3x lower power

than the nearest baseline. An alternate way to interpret its

advantage is that should Doorpler be part of an environment

where near-door events occur frequently (e.g., adjacent to a

busy hallway), it will result in 2.3x less power consumption
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System Doorjamb [5] SonicDoor [9]
FORK
[6]

PeopleFlow [11] FormaTrack [7] Doorjamb 2.0 [8]
Lethe [10]

Doorpler
(5GHz)

Technology Ultrasound Ultrasound
Depth
Camera

IR UWB Radar Ultrasound + IR
Thermal
Camera

CW
Radar

Power (mW) 150 300 26500* 714.9* 2450* 595.5 300 66.3*

TABLE III: The triggered component of Doorpler (5.8GHz array) consumes 2.3x lesser power than the nearest doorway tracking system
(*includes signal processing power consumption when real time claim reported by authors).

Fig. 14: High-level Doorpler
block diagram: The lower
power 2.4GHz radio triggers
the higher power 5.8GHz chain
upon crossing detection.

Fig. 15: As the transmit
power of Doorpler is reduced,
the accuracy starts to de-
crease. This is because the
reflected Doppler signal be-
comes weaker and starts to
submerge itself in the noise-
floor.

each time it is triggered by a person walking close to the

door in the hallway. Furthermore as mentioned in Section II,

Doorpler being an RF-based system does not suffer from many

of the limitations of other doorway tracking systems.

Energy harvesting feasibility: Prior work [20] has

shown that indoor incident solar irradiation varies from 11-

115μW/cm2. Given a 1m x 10cm solar panel of with 20%

efficiency, mounted in the doorway, this translates to a power

supply of 2.2 to 23mW. Consequently, Doorpler’s demand of

6.1mW can be satisfied by many of the doorways. For those

doorways with low irradiance, Doorpler could still potentially

be harvestable by placing larger solar panels and/or placing

them above the door frame on either side of the doorway. From

Table III, we also point out that Doorpler can be within the

harvestable range so long as the 5GHz radio chain is triggered

for less than 32% (=23mW/(5.8+66.3)mW) of the time.

C. Real-timeness of Doorpler

We next evaluate if Doorpler can operate in real-time by

measuring the run-time of the baseband processing on the

MSP432. We observed that the direction can be estimated

by the MSP432 at an average of 13.8ms. With 750ms of

crossing data (Section V-F) on each side of the doorway

needed to achieve a high accuracy, a direction estimate can be

provided just 763.8ms(=750+13.8ms) after the person crosses

the sensor. Anecdotally, at an average walking speed of 1.2m/s,

a human covers just over a step within a 763ms duration.

Thus, Doorpler can enable several real-time smart home

applications like smart-lighting or automatic HVAC control.

From an implementation perspective, to save memory on the

MCU, steps 1, 2, 4 to 6 of Section III-B were implemented

in a streaming manner (i.e. per arriving FFT frame).

Fig. 16: Effect of number of receive chains : The recall and effective
direction accuracy increase as we add more receivers. This is because
AoA errors made by a single receive pair get mitigated while taking
a consensus. Doorpler uses 4 receive chains.

D. Effect of Number of Receive Chains

The number of receivers has an impact on the total power

consumption of Doorpler. From Fig. 16, we see that the

recall and effective direction accuracy increases as we add

more receivers. This is because AoA errors made by a single

receiver pair gets mitigated during consensus. We point out

that there is an inherent power-accuracy trade-off here - with

more receivers, even though the accuracy increases, the power

consumption also increases by 11.6mW for every RX-chain.

However, Doorpler still uses all 4 RX-chains because the array

comes on for only a small fraction (0.4%) of the time.

E. Effect of Transmit Power

We next study the effect of lowering the transmit power,

as a lower transmit power typically results in lower power

consumption [44]. One person was asked to walk a total of 120

times in varying directions (Fig. 13), through an instrumented

doorway (Fig. 12b). Fig. 15 shows that as we lower the trans-

mit power from -10dBm to -30dBm (by attaching attenuators),

the ability to detect crossings decreases. This is because the

reflected Doppler becomes weaker and submerges itself in the

noise-floor. The precision and direction accuracy do not suffer

because the fraction of crossings detected is low. As before,

there is a power-accuracy tradeoff here. However, the accuracy

gain by transmitting at -10dBm outweighs the power benefits

at -15dBm and lower. Hence, Doorpler transmits at -10dBm.

F. Effect of Wake-up Time

We next study the effect of the wake-up time of the 5GHz

chain on accuracy and timing. If the 2.4GHz radio triggers too

late, then the Doppler is not significant (θ ˜= 0°), while if it

triggers too early then noisy spectrogram cells, or data from

a prior crossing starts to dominate. From Fig. 17, we observe

that the 5GHz array can be woken up as late as 750ms before

a doorway crossing event. This also says that any future work

that replaces the 2.4GHz radio with an alternate sensor must

ensure that the 5GHz array is woken up at least 750ms before
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Fig. 17: The 5GHz array works with high accuracy as long as it
is triggered at least 750ms before the person crosses the doorway.
With a late trigger, the accuracy suffers because the Doppler is
not significant. With an early trigger, the accuracy suffers as noisy
spectrogram cells, or data from a prior crossing starts to dominate.

Fig. 18: As the degree of overlap between FFT samples in the
spectrogram decreases, the accuracy of Doorpler starts to decrease.
This is because with lesser overlap, the useful Doppler data gets out-
weighed by noisy spectrogram cells.

the person reaches the doorway threshold. Since we consider

an equal time window on either side of the doorway crossing

point to determine direction, this result places a lower bound

on the real-timeness of the system (i.e. at least 750ms after

the person crosses the doorway threshold).

G. Effect of Degree of Spectrogram Overlap

The degree of spectrogram overlap is a measure of how

often an FFT must be performed by the MCU. A high overlap

results in a tighter real-time bound as lesser ‘fresh’ samples are

required for each subsequent FFT (stream processing of Steps

1, 2, 4 to 6). From Fig. 18, we see that as the overlap decreases,

the accuracy also starts to decrease. This is because with lower

overlap, the useful signal data gets “out-weighed” by the noisy

spectrogram cells. Consequently, Doorpler uses 90% overlap.

Despite the high overlap, the MCU performs all the streaming

FFT-related operations on a single batch of 64 samples from

all receive chains, on average 13ms before the next set of 6

samples (90% overlap) arrives. A high overlap also results in

a higher power draw as the on-time of the MCU increases.

This does not impact Doorpler as the MCU consumes only

6mW, and the accuracy benefits of a high overlap outweigh

the MCU “sleeping” benefits of low overlap.

VI. DISCUSSION

A. Health Concerns of Doorpler

There are no health concerns with Doorpler as its Effective

Isotropic Radiated Power (EIRP) after accounting for antenna

gain and cable loss is just 125μW (-9dBm). In comparison,

the maximum FCC permitted transmit power for an indoor

5GHz WiFi access point is 1W [65] (nearly 8000x higher).

B. Building the Integrated System

We have demonstrated that Doorpler can perform doorway

crossing detection and direction estimation using just a -

10dBm tone via software defined radios. However, this proto-

type is both expensive and bulky. Our next step is to engineer

an integrated system based on Section V-B. We would then

aim to incorporate it with identity sensing from Doorjamb [5]

or FormaTrack [7]. Such a system would take us closer to the

vision of plug-and-play doorway tracking systems [5], [34].

C. Multi-Person Crossings

Doorpler has trouble when multiple walk through the

doorway one behind the other (occlusion), a strong point of

FORK [6]. However, this is typically not a common scenario

in homes (for instance, in a prior study, the median time gap

between two different individuals walking through the same

doorway in an 8-room home was 10 minutes [66]).

D. Effect of Pets and Doors

Doorpler can be triggered by crossing pets as they too create

Doppler. However, their gait is different from humans [67]. We

leave it as a future work to differentiate pets based on gait.

While we do not explicitly consider door interactions in this

work, we hypothesize that Doorpler can be made to handle

the common case of a person walking up to the door, open-
ing/closing it and continuing motion. The more challenging

scenario occurs when the door moves simultaneously in the

direction opposite to human motion, resulting in simultaneous

Doppler from both sides. However, this can potentially be

addressed by leveraging the cyclicity of human gait. We leave

it as a future work to test Doorpler with door movements.

VII. CONCLUSION

In this paper, we present Doorpler, a low-power and real-

time Doppler-based zone occupancy sensing solution that

performs crossing detection and direction estimation using

just an RF tone signal. Doorpler infers the direction of

human transition by computing the angle-of-arrival of the

reflection coming from the human. We evaluate Doorpler via a

scripted study and two in-situ studies. Our results indicate that

Doorpler can achieve over 99% and 95% accuracy across all

metrics of interest in the scripted and in-situ studies, respec-

tively. Our analyses also estimate that an analog realization

of Doorpler would consume 6.1mW of power, falling in the

indoor harvestable solar range. Our implementation of the

baseband processing on an ultra low power MCU took 13.8ms,

thus having the potential to enable several real-time smarthome

applications like smart-lighting, HVAC control, etc.
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