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ABSTRACT
Decimeter-level localization has become a reality, in part due to
the ability to eliminate the effects of multipath interference. In this
paper, we demonstrate the ability to use multipath reflections to
enhance localization rather than throwing them away. We present
Multipath Triangulation, a new localization technique that uses
multipath reflections to localize a target device with a single re-
ceiver that does not require any form of coordination with any
other devices. In this paper, we leverage multipath triangulation
to build the first decimeter-level WiFi localization system, called
MonoLoco, that requires only a single access point (AP) and a sin-
gle channel, and does not impose any overhead, data sharing, or
coordination protocols beyond standard WiFi communication. As a
bonus, it also determines the orientation of the target relative to the
AP. We implemented MonoLoco using Intel 5300 commodity WiFi
cards and deploy it in four environments with different multipath
propagation. Results indicate median localization error of 0.5m and
median orientation error of 6.6 degrees, which are comparable to
the best performing prior systems, all of which require multiple
APs and/or multiple frequency channels. High accuracy can be
achieved with only a handful of packets.
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1 INTRODUCTION
In recent years, several new developments have enabled RF local-
ization with tens of centimeters error – a promising and impor-
tant step towards the vision of accurate and ubiquitous indoor
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device localization. A common thread that runs through this new
generation of techniques is the ability to eliminate the effects of
multipath interference by directly measuring geometric features
of the line of sight (LoS) signal, such as angle of arrival (AoA) or
time of flight (ToF). However, due to fundamental limits in clock
synchronization or range resolution, current methods require some
form of explicit coordination between nodes. For example, AoA-
based methods require coordination across multiple access points
(APs) to perform triangulation; and ToF-based methods require
establishing two-way communication as well as channel switching
between the transmitter and receiver to overcome the challenge of
clock synchronization and bandwidth limitation. Coordination be-
tween nodes can take many forms but cannot be achieved without
introducing complexity, communication overhead, pre-deployed
infrastructure, and/or the practical challenges of protocol rollout
and adoption.

In this paper, we present a different approach toWiFi localization:
instead of eliminating the effects of multipath reflections, we use
them to help localize the transmitter. Every multipath reflection is
considered to be an independent measurement of the target location.
We extract features of the multipath signals, including their angle
of arrival (AoA), angle of departure (AoD), and relative time of
flight (rToF), i.e. their ToF relative to that of the LoS path. These
multipath features are combined with the AoA and AoD of the LoS
path to form a multipath triangle between the target device, the
receiver, and the reflector. The key insight behind our approach
is that the geometry of this triangle is fully constrained; the AoA
and AoD of the two paths define the shape and orientation of the
triangle while the rToF uniquely defines its scale. As such, it can be
used to triangulate the position of the transmitter relative to the
receiver. In effect, this approach uses multipath reflections in the
same way that conventional triangulation uses multiple APs. We
call this approach multipath triangulation.

The main benefit of multipath triangulation is that it enables
what we call unaided device localization: a single receiver can local-
ize a transmitting target without coordinating with any other nodes.
It avoids coordination with APs by using multipath reflections to
triangulate the target location, and it avoids coordinating with the
transmitter by measuring rToF instead of absolute ToF. Unlike ToF,
rToF can be measured entirely at the receiver without coordinat-
ing with the transmitter because it relies on relative phase values
across frequencies, thus not requiring clock synchronization [18].
In contrast, existing systems require the APs to share their loca-
tions with mobile nodes [5, 32, 34], to share measurements with
each other [9, 18, 22, 47], or to perform coordinated actions with
the target node for time synchronization [7, 24] or frequency hop-
ping [40, 48, 49]. Each of these methods incurs some challenges of
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coordination in terms of complexity, overhead, infrastructure, or
adoption.

We leverage this feature of multipath triangulation to design
MonoLoco, the first unaidedWiFi localization systemwith decimeter-
level accuracy that requires only a single commodity WiFi receiver
and a single channel. As a bonus, it also provides the orientation of
the target with degree-level accuracy. MonoLoco uses only Channel
State Information (CSI) from a 3-element antenna array to derive
AoA, AoD, and ToF of each path. It defines a new model of the
wireless channel based on subspace-based super-resolution meth-
ods [18, 29, 33] that combines transmitting antennas, receiving
antennas and multiple frequency subcarriers into a single large-
aperture sensing array. Then, it plugs the derived AoA, AoD, and
ToF into a non-linear optimization problem to determine the loca-
tion and orientation of the target. CSI is already collected by com-
mercial WiFi chipsets without requiring a firmware upgrade, and
multi-element arrays are commonly used on APs, laptops, drones,
televisions, and many other devices. As such, MonoLoco is fully-
piggybacked on top of WiFi communication; it does not impose any
requirements beyond standard WiFi protocols, including hardware
changes, protocol overhead, external clocks, external sensors (such
as inertial sensors), or environmental profiling. Thus, MonoLoco
can be used opportunistically whenever these nodes happen to
communicate, with no additional overhead.

Furthermore, CSI is measured from the packet preamble and,
as such, can be measured for eavesdropped packets even with-
out 802.11 association, and even if the packets are encrypted. Thus,
MonoLoco allows anyWiFi device to localize any other nearbyWiFi
device even if neither of them is an AP. For example, a home au-
tomation system can localize controllers such as smart thermostats
or smart plugs (with respect to its own coordinate system), even if
neither the controllers nor the home’s AP(s) support a localization
protocol. In addition, MonoLoco provides orientation estimates
with degree-level accuracy, which can enable new context-based
applications. For example, when a person asks a smart speaker for
a picture or recipe, it can automatically cast the image to a display
with a position and orientation that is visible from a given location.
Similarly, a robot can navigate to a WiFi power socket while using
its estimated orientation to determine the side of the wall from
which to approach it.

To evaluate this approach, we implement MonoLoco using Intel
5300 WiFi cards operating at 5GHz with 40 MHz of bandwidth.
Each node was equipped with a 3-element linear antenna array
with 2.7 cm spacing between antennas. We deployed MonoLoco in
four environments with different multipath properties, including
an anechoic chamber, a home, two office environments, and two
public spaces. Our experiments show that MonoLoco achieves a
median localization error of 0.5m and a median orientation error of
6.6 degrees, which are comparable to the best existing systems that
require multi-node coordination. Results also show that MonoLoco
can approach this accuracy with as few as 7 packets. These results
are promising and serve as a proof-of-concept for the multipath
triangulation approach. We expect these results to improve when
used with more advanced resolution algorithms such as Maximum
Likelihood methods [46] and non-linear solvers, which are now
becoming computable. In addition, Results are also expected to

improve when using more number of antennas or larger bandwidth,
all of which are possible with today’s WiFi chips.
Contributions: The main contributions of this paper include:

• Multipath triangulation: the first localization technique that
can be used by a single unaided receiver. This method is
general and can be applied beyond WiFi.

• 3D multipath super-resolution: a new model for the multipath
channel that enables super-resolution methods to estimate
AoA and AoD with 26-36% higher accuracy than existing
models and provides the relative ToF between paths.

• MonoLoco: the first WiFi localization system that simultane-
ously provides decimeter-level localization and degree-level
orientation by only using CSI measurements from a single
channel in a single receiver.

2 BACKGROUND AND RELATEDWORK
In general, wireless localization schemes either map measurements
from wireless signals into geometric parameters such as distance
or direction to localize the target with respect to one or multiple
reference devices, or prelabel landmarks to directly localize the
target in the space. In this paper, we focus on the first scenario
where two devices are localized with respect to each other. The
state-of-the-art device localization systems can be categorized into
(1) distance-based (or ToF-based) methods which leverage trilater-
ation or multilateration, and (2) angle-based methods which use
triangulation. However, using either of these methods requires
some form of explicit coordination between nodes that is explained
next.

Time of Flight (ToF) measurement is a widely used technique for
device localization, which relies on measurements of travel time
of signals between the transmitter and receiver. However, accurate
measurement of ToF requires a common clock and strict time syn-
chronization between the transmitter and receiver. To overcome
this challenge, traditional ToF-based systems either use multiple
synchronized transmitters such as the GPS system [28], or use
the "echoing" method [23, 27, 31, 45, 51] where the transmitter
measures the round trip propagation time. A problem with round-
trip ToF-based systems is the response delay at the receiver which
highly depends on the receiver electronics and protocol overheads.
A recent system called Chronos [40] addresses this problem by
leveraging the channel frequency responses and combining these
measurements from both transmission directions. In effect, it can
accurately estimate ToF by removing the sampling frequency off-
set caused by lack of time synchronization between two nodes.
However, it still suffers from the fundamental limitation of the
round-trip techniques, which is the required two-way communica-
tion and overhead of message exchanging between any two nodes
to localize each other. Cricket [32] is a localization system that
overcomes the synchronization problem by using a combination of
RF and ultrasonic signals, however, it requires dedicated hardware.

Time Difference of Arrival (TDoA) is another technique to over-
come the synchronization problem. It uses relative time measure-
ments betweenmultiple pairs of APs or reference nodes with known
locations, instead of absolute time measurements [20, 48–50]. Each
difference of arrival time measurement produces a hyperbolic curve
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Underlying Method Decimeter-Level Orientation Single Access Unaided Fully
Localization Point (No Coordination) Piggybacked

ToneTrack [49] Multilateration ✕ ✕ ✕ ✕ ✕

PinLoc [34] Fingerprinting ✕ ✕ ✕ ✕ ✓
SpotFi [18] Triangulation ✓ ✕ ✕ ✕ ✓
Chronos [40] Trilateration ✓ ✕ ✓ ✕ ✕

MonoLoco Multipath Triangulation ✓ ✓ ✓ ✓ ✓

Table 1: Compared to the state-of-the-art of WiFi localization systems, MonoLoco is the only single access-point solution
that provides decimeter-level localization and orientation information and requires no coordination, time synchronization or
external networking protocol with the target or with other APs.

in the location space, so the TDoA from at least three receivers is
required to find the intersection and accordingly the location of
the transmitter. Although this technique does not need any time
synchronization between the transmitter and receiver, it requires
strict time synchronization between the access points.

Another component of ToF (or TDoA)-based localization systems
is to convert the time (or distance) measurements into locations
using geometric algorithms such as trilateration or multilatera-
tion. These algorithms localize the target by finding the intersec-
tion of distance measurements from multiple anchors, which man-
dates a centralized localization infrastructure with multiple access
points or reference nodes to coordinate the localization together.
Chronos[40] addresses this issue by performing trilateration be-
tween time-synchronized antennas separated by 30cm, however,
it still requires coordination between the transmitter and receiver
to share their channel measurements for clock synchronization.
SAIL [27] is another system that can localize a target with a single
access point using round trip ToF measurements. However, it relies
on external IMU sensors on the target as well as target movement
to perform trilateration.

Besides the synchronization error, the other factors that affect
ToF (and TDoA) estimation accuracy are the signal bandwidth and
the sampling rate. Time resolution is inversely related to the ra-
dio bandwidth, and low sampling rate (in time) reduces the ToF
resolution since the signal may arrive between the sampled inter-
vals. Some proposals such as Chronos [40] and ToneTrack [49]
emulate wideband communication by switching between multiple
channels and stitching measurements from these channels together
to obtain the ToF with high resolution. However, not only these
techniques do not overcome the required coordination for time
synchronization, they even introduce new coordination between
the transmitter and receiver for channel switching. Some other
proposals address the bandwidth limitation by using frequency
domain super-resolution algorithms [41, 42] and joint estimation
of multiple geometric parameters [39].

Angle-based method or triangulation is another group of lo-
calization systems that either use beamforming (with directional
antenna) to estimate the direction with maximum signal strength,
or leverage relative phase measurements in an antenna array to es-
timate the angle of the LoS path. Although angle-based techniques
do not suffer from time synchronization or bandwidth problem,
they still require measurements from several (four to six) anchors
simultaneously to perform triangulation [9, 18, 19, 22, 47], thus
requiring information sharing and coordination of several nodes

for accurate localization. In addition, very large antenna arrays (6-8
elements) are usually required [47] to improve the resolution.

Multipath triangulation builds on the state-of-the-art methods
and combines the best features of angle-based and ToF-based meth-
ods. It avoids coordination between multiple APs by using angular
features of multipath reflections such as Angle of Arrival (AoA) and
Angle of Departure (AoD), and combining them with those of LoS
path. In addition, it overcomes time synchronization problem by
leveraging the difference in ToF of two paths instead of the absolute
ToF to constrain the localization algorithm. Therefore, it does not
require any form of coordination, data sharing, or synchronization.
As a result, any two devices can be localized with respect to each
other even without establishing a two-way communication. In this
paper, we exploit multipath triangulation with WiFi to develop a
device-based localization system called MonoLoco and show that
this technique even works on commodity WiFi devices. MonoLoco
is a system that provides decimeter level location and orientation
information using just a single unaided WiFi receiver. it defines a
novel 3-dimensional super-resolution algorithm that leverages CSI
measurements to estimate the geometric features of multipath re-
flections, and builds upon previous Joint AoA and Delay Estimation
(JADE) techniques [18, 37, 39]. Table 1 summarizes how MonoLoco
compares with existing WiFi-based localization systems.

Disentangling multipath is a widely studied problem in ToF cam-
eras [25], light imaging [10, 13], or wireless sensing and imaging[1,
3, 36, 37]. A recent system called WiCapture [19] introduces a WiFi-
based technique for motion tracking that uses multipath reflections
to compensate for the distortions caused by the sampling frequency
offset. So, it can estimate the trajectory of the motion (not the ab-
solute position of the target) by using the temporal changes in the
phase of the received signal in multiple WiFi access points. Unlike
this previous system, multipath triangulation directly uses multi-
path reflections for geometric mapping in place of multiple nodes
to perform triangulation.

Besides localizing another device, prior works have also at-
tempted other forms of localization such as device-free localiza-
tion of a person with FMCW radars [2, 3], UWB impulse radars
[15, 53], RFID [44], orWiFi [6, 43], as well as self-localization of a tar-
get/robot in the environmentwith fingerprinting [5, 8, 21, 34, 52, 52],
ambient signals [12], SLAM-based techniques [30], or dead reckon-
ing [38]. These techniques are complementary to our system where
every wireless node can localize other nodes with respect to itself.

Orientation Estimation: The standard way to measure the
orientation of a device is via the use of IMUs [14, 16]. However, with



MobiSys ’18, June 10–15, 2018, Munich, Germany Elahe Soltanaghaei et al.

Figure 1: Multipath triangulation uses the (1) AoA and (2) AoD of the direct path to estimate the target’s orientation. Then, in
step (3), it uses AoA and AoD of the reflected path to find the relative location of the target with respect to the reflector and
the receiver. In step (4), it uses the relative ToF between the two paths to find the target location.

IMUs, the gyroscope only provides the derivative of the yaw while
the magnetometer can be limited by perturbation in measuring
the heading in indoor spaces [4]. As a result, some wireless-based
solutions are introduced [26, 35], which use MIMO to estimate AoA
and AoD. However, the performance of these methods is limited by
coarse-grained multipath resolution. Multipath triangulation uses
the same principle but applies a 3-dimensional super-resolution
algorithm to extract the features of multipath more accurately and
identify the direct path from which the orientation is estimated.

3 MULTIPATH TRIANGULATION
Conventional features of multipath reflections such as AoA, AoD,
and ToF are determined in large part by the location of the reflection
surface, which is neither known nor of interest. These multipath
features do not contain any information about the relationship
of the receiver and the transmitter locations. As such, multipath
reflections have generally not been considered useful for localiza-
tion. In this paper, we introduce a new geometric algorithm called
multipath triangulation that combines the geometric features of
a multipath reflection with the LoS path to estimate the location
and orientation of the target device as well as the location of the
reflector. The basic insight behind multipath triangulation is that
the relative ToF (rToF) of two paths, the difference between the
length of the reflected path and the direct path, actually does have
useful information even while the absolute ToF of a multipath reflec-
tion does not. The direct path and a reflected path form a triangle
with the AP at one vertex, the target at another vertex, and the
reflection surface at the third vertex. Two angles of that triangle
can be known based on the AoA and AoD of the two paths, and
the rToF constrains the relative lengths of the sides of the triangle.
Together, these constraints fully determine the triangle and thus
the location of the target and the reflector.

More concretely, the following 4-step procedure can determine
the location/orientation of the target, as illustrated in Figure 1.
In step (1), the AoA of the direct path (θ1) constrains the target
location to be on line relative to the orientation of the receiver’s
antenna array. In step (2), the AoD of the direct path (φ1) constrains
the orientation of the target’s antenna array with respect to the
receiver’s antenna array. This orientation is labeled α . In step (3),

the AoA and AoD of the reflected path (θ2 and φ2) define a triangle
between the target, the receiver, and the reflector, but the size of that
triangle is still unconstrained. Here, the key innovation ofmultipath
triangulation comes into play. From all possible triangles, only one
of them has the corresponding rToF (i.e. the ToF difference of the
reflected path and the direct path). Therefore, in step (4), the rToF
(∆T ) constrains the size of the triangle such that b +c −a = ∆T ×C ,
where b + c is the length of the reflected path, a is length of the
direct path, and C is the speed of light. This fully determines the
triangle, allowing the location of the target (x1,y1) and the location
of the target (x2,y2) to be known.

Conventional triangulation method fully determines the triangle
formed by a target and two receivers by using three pieces of infor-
mation: two AoA estimates from the target to the receivers, and the
distance between the reference receivers. This method is based on
the classical angle-side-angle triangle congruence theorem which
proves that these three properties are sufficient to fully determine
any triangle. Multipath triangulation uses a similar process to fully
determine the triangle formed by multipath reflections, except that
it uses four angle estimates (AoA and AoD of the direct path and a
reflected path) and one rToF value.

It should be noted that the principles of multipath triangulation
are independent of the frequency of the RF signal, antenna array
arrangement, or the multipath resolution algorithm. In addition,
this new triangulation algorithm can be used for different types of
applications where the location or orientation of another device
or a reflector is of interest. These applications range from indoor
navigation and mapping to health/elderly monitoring. In this paper,
we focus on device-based localization and show that this approach
even works on commodity WiFi devices by using MIMO-OFDM
technology and only 3 antennas. We use multipath triangulation to
localize two WiFi devices with respect to each other. This results
into MonoLoco, the first decimeter-level WiFi localization system
that requires no coordination, data sharing or even two-way com-
munication between the transmitter and receiver. In the next sec-
tion, we explain the details of MonoLoco and the implementation of
multipath triangulation for device-based localization.
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4 MONOLOCO: DEVICE LOCALIZATION
Commodity WiFi chips provide the amplitude and phase shifts in-
troduced by the wireless channel in the format of Channel State
Information (CSI). MonoLoco exploits multipath triangulation al-
gorithm and CSI values from a 3-element antenna array and 30
frequency subcarriers to localize and orient another WiFi device.
In this section, we first explain how MonoLoco estimates the geo-
metric features of multipaths such as AoA, AoD, and ToF. Then,
we detail the implementation of the localization algorithm derived
from multipath triangulation. Finally, we explain how MonoLoco
deals with antenna array symmetry and improves localization using
multiple packets, if they are available.

4.1 Super-resolution of AoA, AoD, and ToF
MonoLoco uses a new method to resolve the AoA, AoD, and ToF of
multiple propagation paths between the transmitter and receiver.
The basic intuition is that (a) the AoA creates a predictable phase
shift on the different sensing elements of the receiving antenna
array, (b) the AoD creates a predictable phase shift from each of the
transmitting antennas on a given receiving element, and (c) the ToF
creates a predictable phase shift across different frequencies. To
calculate these values, MonoLoco combines measurements across
multiple subcarriers on multiple receiving antennas, from each of
the transmitting antennas. In our implementation, we use 3 receiv-
ing antennas, 3 transmitting antennas, and 30 subcarriers for a total
of 270 sensing elements. In theory, this large aperture could resolve
as many as 269 different propagation paths. In practice, however,
only a handful of paths can be resolved due to measurement noises.
Still, this set of 270 sensing elements contains enough information
to estimate the AoA, AoD, and ToF and the large aperture allows for
a higher accuracy than state of the art methods. Implementations
that use more antenna elements or more frequencies could achieve
even higher accuracy.

Given this sensing array, MonoLoco resolves multipath features
using a joint estimation technique that we call 3-dimensional super-
resolution. This approach builds on well-established noise subspace
methods such as MUSIC [33] and Joint AoA and Delay Estimation
(JADE) techniques [18, 39]. We first explain how the standard MU-
SIC algorithm works, and then present our extensions for joint
estimation of AoA, AoD, and ToF.

4.1.1 MUSICOverview. MUSIC is based on the intuition that
when different propagation paths have different AoAs, the paths
can be resolved by leveraging the extra phase shift introduced by
the paths on the antenna array. As shown in Figure 2, this additional
phase shift is due to the extra distance that the signal travels to
reach the succeeding elements of the antenna array. This added
phase shift Φ(θl ) is a function of both the AoA of that path and the
distance between antennas, and can be expressed as:

Φ(θl ) = e−j2π f d sin(θl )/C (1)

where θl is the AoA of the lth path, d is the distance between the
antennas, C is the speed of light, and f is the frequency of the
transmitted signal. Consequently, the resulting vector of received
signals across the antenna array due to lth path can be written as
a linear combination of the signal incident on the first (reference)

Figure 2: The phase shift across the antenna array is a func-
tion of the antenna spacing d and the angle of arrival θ of
the signal.

antenna as:

X (t) = [x1(t), ...,xM (t)]T = a(θ )s(t) + N (t) (2)

whereM is the number of receiving antennas, s(t) is the received
signal at the first antenna and N (t) is the noise vector. a(θ ) is called
the steering vector and expresses the expected phase differences
across the antenna array:

a(θ ) = [1,Φ(θ )1, ...,Φ(θ )M−1]T (3)

When there are L incident paths arriving at the antenna array,
the signal received at each antenna is the superposition of all paths.
Therefore, Equation 2 can be written as

X (t) =
L∑
i=1

a(θi )si (t) + N (t) (4)

The MUSIC algorithm analyzes the eigen structure of the correla-
tion matrix by defining M − L eigenvalues as the noise subspace
EL = [e1, ..., eM−L] and the other L eigenvalues as the signal sub-
space. Then, it searches for the AoAs whose steering vectors are
orthogonal to the noise subspace, which appear as peaks in the
following spatial spectrum function:

P(θ ) =
1

aH (θ )ELE
H
L a(θ )

(5)

4.1.2 3D Super-resolution. We extend the standard MUSIC
algorithm into a 3 dimensional joint estimation by leveraging the
spatial diversity in receiving antenna array to estimate AoA, the
spatial diversity in transmitting antenna array to estimate AoD, and
frequency diversity across OFDM subcarriers to estimate relative
ToF. The signal emitted from a linear transmit array will be received
with a phase shift Γ(φ), which is function of AoD. For lth path with
AoD φl , the phase shift across transmitting antennas is given by:

Γ(φl ) = e−j2π f d
′ sin(φl )/C (6)

where d ′ is the distance between transmitting antennas.
Furthermore, the current WiFi standards such as 802.11 leverage

OFDM technology wherein data is transmitted over multiple sub-
carriers. For equispaced OFDM subcarriers, the lth path with ToF
of τl introduces a phase shift of

Ω(τl ) = e−j2π fδTl (7)

across two consecutive OFDM subcarriers with fδ frequency differ-
ence. We point out that the phase shifts due to AoA and AoD across
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subcarriers are negligible due to the small frequency difference
across WiFi channels [18].

MonoLoco jointly estimates AoA, AoD, and ToF by defining the
sensor array from all subcarriers of all receiving antennas for all
streams transmitted from multiple antennas. This information is
accessible in commodity WiFi chips with MIMO-OFDM techniques
(more specifically MIMO spatial multiplexing). The overall attenua-
tion and phase shift introduced by the channel measured at each
subcarrier by each antenna is reported as the Channel State Informa-
tion (CSI) in a 3×3×30 format - 3 receiving antennas, 3 transmitting
antennas, and 30 subcarriers. Therefore, the measured sensor array
X is constructed by stacking CSI from all the subcarriers at all an-
tennas, resulting in a single column vector of length 3 × 3 × 30 (=
270). The new steering vector a(θ ,φ,τ ) is formed by phase shifts
introduced at each of the sensors, and is given by:

a′(θ, τ ) = [

RX1︷    ︸︸    ︷
1..ΩK−1

τ , Φθ , ..., Ω
K−1
τ Φθ︸                ︷︷                ︸

RX2

, ...,

RXM︷                        ︸︸                        ︷
ΦM−1
θ , ..., ΩK−1

τ ΦM−1
θ ]T

(8)

a(θ ,φ,τ ) = [a′θ,τ , Γφa
′
θ,τ , ..., Γ

N−1
φ a′θ,τ ]

T (9)
where Ω(τ ) is written as Ωτ , Φ(θ ) as Φθ , and Γ(φ) is written as Γφ .
Therefore, the new measurement matrix X is constructed using
the above steering vector, and three parameters of AoA, AoD, and
ToF that maximize the spatial spectrum function (Equation 5) will
be estimated. However, this requires finding the peaks in a 4D
space (θ ,φ,τ , P). To solve this problem, instead of implementing
the standard MUSIC algorithm, we use the improved version called
RAP-MUSIC [29], which uses an iterative mechanism to find the
paths from signal subspace instead of noise subspace. Therefore, in
each iteration, the global maximum is considered as the resolved
path.

Another challenging issue is that the ToF estimates do not cap-
ture the actual time that the signal travels. The reason is that the
WiFi transmitter and receiver are not time-synchronized. Further-
more, the estimated ToFs also include the delays from sampling
time offset and packet detection delay [18, 34]. To address this chal-
lenge, in the next section, we explain MonoLoco’s ToF sanitization
approach, which results in accurate estimation of the relative ToF
between different resolved paths.

4.1.3 ToF Sanitization. One of the challenges in estimating
ToF with commodity WiFi devices is that the measured channel at
the receiver experiences a random phase shift due to sampling time
offset (STO) and packet detection delay (PDD) across packets [34].
While the variations due to sampling time offset may seem small,
packet detection delays are often an order of magnitude larger
than ToF [40]. To address this challenge, MonoLoco applies a ToF
sanitization algorithm similar to the ones proposed in PinLoc [34]
and SpotFi [18].

STO and PDD have a constant effect across all transmitting
(TX) or receiving (RX) antennas since all the radio chains of a
WiFi card are time-synchronized. Hence, an additional delay of
τs adds a phase shift of −2π fδ (k − 1)τs to the phase of the kth
subcarrier in each antenna. For each CSI measurement, we remove
the offset by removing the linear fit of the unwrapped phase shifts

across subcarriers of all N × M antennas. Suppose ψ (n,m,k) is
the unwrapped phase of the CSI at the kth subcarrier of a packet
transmitted from the nth TX antenna and received at themth RX
antenna, then we can obtain the optimal linear fit as:

τ̂s = arдmin
β

N ,M∑
n,m=1

K∑
k=1

(ψ (n,m,k) + 2π fδ (k − 1)β + α)2 (10)

Intuitively, β is the common slope of the received phase re-
sponses for all antennas, and α is the offset. The modified CSI
phase is then defined to be:

ψ̂ (n,m,k) = ψ (n,m,k) − 2π fδ (k − 1)τ̂s (11)

Note that this technique does not estimate the exact value of
τs for each packet. The slope of unwrapped phases across the sub-
carriers consists of the delay caused by STO/PDD as well as the
phase shift due to ToF of the shortest path. Therefore, subtracting
this value leaves only enough information to derive the relative ToF
(rToF) between multipaths. In other words, the values τl derived in
Section 4.1.2 are not valid after ToF sanitation, but the rToF value
∆Tj = τj − τ1 for path j > 1 with respect to the shortest path is still
valid.

4.2 Localizing the Target
MonoLoco localizes the target by combining the resolved geomet-
ric features of multipaths described above: the AoA and AoD of
multiple propagation paths, and the rToF between the LoS path
and each reflected path. MonoLoco defines the LoS path to be the
resolved path with the shortest ToF value. To localize, MonoLoco
finds the orientation and location of the target that best explains
these observed multipath features, as described below.

4.2.1 Multipath Geometry. Without loss of generality, we
explain MonoLoco’s multipath geometry in a simple case of two
paths; but the method generalizes to more multipath signals in
a straightforward manner. Figure 3 illustrates an example of the
target location and orientation. The path angles are defined to vary
between − π

2 to π
2 going from the 3rd array element to the 1st, as

illustrated. In the example in the figure, the LoS signal is transmitted
from the target with AoD φ1, propagates a distance a and arrives at
the receiver with AoA θ1. The multipath reflection is transmitted
from the target with AoD φ2, propagates a distance b+c and arrives
at the receiver with AoA θ2. These values represent the 5 multipath
features resolved by the signal processing algorithms in Section 4.1:
AoA (θ1) and AoD (φ1) of the LoS path, AoA (θ2) and AoD (φ2) of the
reflected path, and the relative ToF between two paths ∆T = τ2 −τ1.

Given these values, MonoLoco must estimate 5 new parameters:
the target orientation (α ), the target location (x1,y1), and the reflec-
tor location (x2,y2). We define the coordinate system with respect
to the receiver’s antenna array and the orientation of the target α
is defined to vary between 0 to 2π moving clockwise. With these
definitions, the multipath geometry defines four triangles named
A − D, as shown in Figure 3. We use these triangles to define the
following 4 equations that relate the observed multipath features to
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Figure 3: Multipath Geometry. The direct path and a multi-
path reflection form a triangle (D) between the AP, the tar-
get, and the reflector. This triangle defines a relationship be-
tween the target location/orientation and the observed AoA,
AoD, and rToF values. That relationship can be encoded in
terms of three other triangles (A, B, and C).

the location and orientation parameters we are trying to estimate:

△A : x1
y1
= tan(θ1) (12)

△B : x2
y2
= tan(θ2)

△C : x1 − x2
y1 − y2

= tan(α − φ2), where

α = φ1 + θ1
△D : b + c − a = ∆T ×C, where

a = ∥x1,y1∥2
b = ∥x2,y2∥2
c = ∥(x1 − x2), (y1 − y2)∥2

where C is the speed of light. Intuitively, equations derived from
trianglesA toC define the relative location of the target with respect
to the receiver and the reflector. The equation derived from triangle
D leverages the relative ToF to define the actual scale of these
triangles since there is only one scale that satisfiesb+c−a = ∆T ×C .
Finally, the orientation of the target is defined to be

α = φ1 + θ1 (13)
MonoLoco solves for α directly using the equation above and

solves for the location parameters XY = [x̂1, ŷ1, x̂2, ŷ2] by solving
the following non-linear optimization problem:

[ ˆXY ] =argmin
XY

S(XY ) (14)

Figure 4: The symmetry of a linear antenna array cre-
ates ambiguity in AoA and AoD measurements. Therefore,
MonoLoco solves for the target location that best explains
either the resolved angle or its supplementary angle.

where
S (XY ) = [tan(θ1) −

x1
y1

]2 + [tan(θ2) −
x2
y2

]2

+ [tan(α − φ2) −
x1 − x2
y1 − y2

]2 + [(∆T ×C) − (b + c − a)]2

To optimize this objective function, we search for the most likely
location of the target and reflector by forming a 20 centimeter
by 20 centimeter grid, and evaluating S(XY ) at each point in the
grid. Then, we use constrained nonlinear optimization (the fmincon
solver in Matlab) on the three positions with minimum S(XY ) in
the grid to find the best solution.

Note that the above equations will hold for any arrangement of
target-reflector location and orientation, and could be applied to
different antenna array arrangements. We will discuss symmetry
ambiguity of linear arrays in Section 4.2.2 and explain the required
modifications to provide 360-degree coverage.

4.2.2 OvercomingAntenna Symmetry. The angle spectrum
resolved with a linear antenna array is 180 degrees, so it cannot de-
termine from which side of the array the signal is arriving. Figure 4
illustrates an example of this ambiguity in which incident paths A
and B arrive from different sides of the array but the observed AoA
for the two paths are equal (θA = θB ). The reason for the angle
ambiguity is that a linear array has reflectional symmetry along
the direction of the array, and so signals from both sides produce
equivalent phase shifts across a linear antenna array.

In many applications such as robotics and virtual reality where
WiFi devices can be anywhere in the surrounding environment,
a circular or non-linear array is used to break this symmetry by
adding a sensing element in a second dimension, thereby increasing
the angle resolution to a full 360 degrees. However, most commer-
cial APs still use linear antenna arrays and so, in this paper, we
evaluate MonoLoco using linear antenna arrays. This is a worst-
case analysis and future products that can be built with circular
arrays can achieve higher accuracy.

Given this symmetry, any AoA (or AoD) value θ could actually
be one of two possible values: θ or π − θ . To address this chal-
lenge, MonoLoco applies the localization algorithm using both the
resolved angle and its supplementary angle. Therefore, it runs 8
optimization processes in parallel to examine the symmetry ambi-
guity for the AoA and AoD of the reflected path and AoD of the
direct path (e.i. 3 slots with 2 possible values for each result in 8
combinations or 8 symmetry scenarios). Then, from 8 estimated
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locations, MonoLoco chooses the one with minimum cost value of
the objective function in the corresponding estimated location. The
intuition behind this algorithm is that only one of these 8 conditions
is geometrically feasible, which appears with minimum cost value.
It should be noted that this approach is not a solution for identify-
ing the symmetry scenario, but just a mechanism to estimate the
location and orientation of the target regardless of the symmetry
ambiguity. We expect to have errors in estimating the correct sym-
metry scenario in the case of large errors in multipath resolution,
but eventually, we expect that the final estimated location is the
best solution since it has the minimum cost value.

4.2.3 Improving Localization using Multiple Packets. Ev-
ery packet that is received creates a new observation of the 5 re-
solved multipath features described above. If more than one packet
is received, these observations can be combined to create an over-
constrained system of non-linear equations in order to further
improve localization. There are many ways to solve this non-linear
system and in this sectionwe describe a 3-step data cleaning process.
This process is motivated by our observation that noise in some
packets can cause super-resolution to resolve spurious paths, while
other packets resolve correct paths. The three steps are described
below.

Step 1:We estimate the location/orientation parameters for each
packet independently, using the methods described before. Any
packet with spurious paths will generally result in geometrically
infeasible conditions, which will manifest as high values of the
objective function S(XY ). Therefore, MonoLoco uses a very low
threshold value to discard any packets with objective values sub-
stantially higher than zero. Note that any packet with geometrically
feasible multipath features will have an objective value that is close
to zero, so this step does not eliminate all packets with errors.

Step 2: Previously, we assumed the path with the shortest ToF
is the direct path. However, in the presence of spurious resolved
paths, this assumption may not be held. To this end, Multipath
features from the remaining packets are used to determine the
true LoS path. MonoLoco applies the K-means clustering algorithm
on all paths from remaining packets. The number of clusters is
set to 5, based on the typical number of dominant paths in an
indoor environment [9, 47]. Then, we extend the SpotFi’s direct
path likelihood function [18], where the likelihood of lth path being
the direct path is calculated as

Pl = exp(ωCC̄l − ωθ σ̄θl − ωφ σ̄φl − ωτ σ̄τl − ωs τ̄l ) (15)

where C̄l is the number of points in the cluster of lth path, τ̄l
is the average ToF of the cluster, and σ̄θl , σ̄φl , and σ̄τl are the
population variances of the estimated AoAs, AoDs, and ToFs for
the corresponding cluster, respectively. Theω weighting factors are
constant values to account for different scales of the corresponding
terms [18]. The intuition behind this approach is that the parameters
of the direct path have small variations over time compared to the
estimated reflected paths. Therefore, the size and variance of each
cluster are strong indicators of the LoS path.

After the true LoS path is identified, MonoLoco filters any re-
maining packets that have a resolved path that is shorter than the
LoS path. In other words, it recalculates the rToF between the re-
flected path and the LoS path and filters out the packets where the

identified direct path does not have the shortest ToF:

∃ τ r efi | (τ losi − τ
r ef
i ) < 0 (16)

where τ losi and τ r efi are the ToF of the direct path and the reflected
path in ith packet, respectively.

Step 3: The set of remaining packets is called (Pf il ter ed ), each of
which has its own location/orientation estimate. MonoLoco chooses
the packet that has the lowest objective value. This could be ex-
pressed as

[ ˆXY , α̂] = arg min
XYi

S(XYi ), i ∈ Pf il ter ed (17)

Intuitively, MonoLoco chooses the packet for which the 5 re-
solved multipath features are most consistent with each other, pre-
sumably because this packet was subject to the least noise. We did
not do a comprehensive exploration of the selection algorithm and
present this one only as a proof of concept. We believe that other
approaches to solve full non-linear system defined by Pf il ter ed
may indeed produce better results.

5 EVALUATION
5.1 Experimental Setup
We evaluate our system using Intel NUCs D54250WYK1 equipped
with off-the-shelf Intel 5300 WiFi cards which support three anten-
nas. We employed Linux CSI tool [11] to obtain the PHY layer CSI
information for each packet. The experiments are conducted in the
5 GHz WiFi spectrum using 40 MHz bandwidth. We built 9 nodes
and used one node as the access point (AP) and 8 nodes as target
devices in multiple locations (as illustrated in Figure 5). We use
the method introduced in WiCapture [17, 19] for calibration and
operated all nodes in monitor mode. Each node was equipped with
three 3dBi omni-directional antennas2 in a uniform linear array.
The distance between any two antennas is equal to 2.7 cm (half a
wavelength). The nodes were placed atop 110cm speaker stands
during the experiments to represent a practical height.

All experiments were conducted as follows. First, all nodes (both
AP and target nodes) are set in monitor mode on channel 118
with 40 MHz bandwidth in the 5GHz band. Then, for every target
location shown in the testbeds, 500 packets were transmitted with
a 5 ms interval using the spatial multiplexing protocol in 802.11n.
Measurements were collected in both directions – from the target to
the AP and from the AP to the target – both of which were analyzed
independently as separate experiments to estimate the location
of one device with respect to the other one. The main results are
calculated using 20 packets and the impact of the number of packets
on localization is discussed in Section 6.3.

We first validate the localization model in an anechoic chamber
as shown in Figure 6(a). This enabled experiments with known
propagation paths. The number of reflections was varied between 1
to 5 and different orientations and positions were measured, result-
ing in 30 different target positions in total, as shown in Figure 5(a).
Then, to evaluate the performance of MonoLoco in more realistic
conditions, we deployed in a home with two occupants, in two

1https://ark.intel.com/products/76977/Intel-NUC-Kit-D54250WYK
2https://www.data-alliance.net/antenna-5-1-5-8ghz-3dbi-omni-directional-dipole-w-
rp-sma-male-connector/
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Figure 5: Experiments were run in four environments with
varying size and multipath complexity. The closest AP to
each target was used for localization.

offices environments and a large public arena with the presence
of 1-5 occupants. Locations of WiFi APs and 51 target locations
are depicted in Figures 5(b)-(d) with the snapshots of the deploy-
ment environments in 6(b)-(d). These experiments resulted in 102
different experimental scenarios, including both directions (from
AP to target and target to AP). In cases where more than one AP is
deployed to span the area, the closest AP to the target location was
used for localization. The majority of node distances are between
1m to 4m due to the size of the spaces available, but 26% of total
experiments evaluate distances larger than 4m especially in the
corridor and public arena. This is similar to the experimental setup
of the related works [40, 47] with 25-35% of localization tests having
4m to 15m distances. Ground truth location and orientation were
measured using a combination of laser range finder, a construction
protractor, floor and ceiling tiles, and architectural drawings of the
building.

We compare the performance of the proposed 3D super-resolution
algorithmwith the 2Dmethod proposed in Spotfi [18]. However, the
closest available localization system to MonoLoco is Chronos [40]
that demonstrates accurate WiFi localization with a single AP, but
it relies on external coordination between the transmitter and re-
ceiver for sharing channel measurements in each side of transmis-
sion as well as frequency hopping. In contrast, MonoLoco assumes
no coordination or data sharing between the two nodes. In addi-
tion, Chronos requires a large spacing in the AP’s antenna array

Figure 6: The four experiments tested different distances, an-
gles, and multipath environments.

(12-30cm) and so it would be severely handicapped if run on the
hardware designed for MonoLoco. So a head-to-head comparison
would not be meaningful and only a qualitative comparison is pro-
vided.

5.2 Model Validation in Anechoic Chamber
Before testing in a realistic environment, we validated the proposed
localization model in a controlled environment such as an ane-
choic chamber with known propagation paths. This experiment
establishes an experimental upper bound on accuracy by limiting
multipath reflections. We first established the lack of multipath
reflections in the anechoic chamber by verifying that no packets
are received since the spatial multiplexing technique in 802.11n
requires multipath propagation to make multi-stream transmis-
sions. Any reflections in the chamber were not strong enough to
enable transmission. Then, we placed 1-5 curved metal sheets at
different locations in the chamber to generate controlled multipath
geometries. These geometries included the ambiguity caused by
antenna symmetry described in Section 4.2.2. The metal sheets
were curved to create a scattering effect, increasing the chance that
the reflections reach the receiver. We used packet reception rate to
verify the incidence of at least one reflection path.

From Figure 7, we observe that the proposed localization method
achieves a median localization error of 25cm and median orienting
error of 3.5 degrees in anechoic chamber. There are likely two main
sources of this error. First, ground truth: since the coordinate sys-
tem is defined relative to the AP antenna orientation, ground truth
errors can produce error in target location. Second, multipath reso-
lution: the resolution capability of MUSIC is limited by the angular
separation of multipath components, and the physical geometry
of the linear antenna arrays causes lower resolution of estimated
angles as they approach their extremes (−pi/2 and pi/2) [47].
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Figure 7: The cumulative distribution of location error
shows that MonoLoco’s median error varies between 0.2m
to 1.3m across environments with different multipath com-
plexity.

5.3 Location Accuracy
Next, we evaluate MonoLoco in realistic indoor environments with
complex multipath propagation. We deploy multiple WiFi nodes
equipped with WiFi cards in three sets of environment with dif-
ferent levels of complexity: (1) a home deployment, which is a
cluttered environment with a lot of furniture nearby the nodes; (2)
two office environments, which includes deployment in two offices
on two sides of a corridor. During the experiment there were 1 to 5
occupants inside the offices sitting at the desks, and (3) two public
areas, including a large open space and two corridors. The open
space area contained many tables and chairs at about the same
height as the WiFi nodes, which resulted in a complex multipath
environment and NLoS scenarios. Both areas enabled larger dis-
tances between the AP and the targets, compared to the home and
office deployment. The open area allowed reflection paths that were
much longer than the LoS signal while the corridors were narrow
and limited the separation of propagated paths from the LoS signal.

As seen from Figure 7, themedian localization error ofMonoLoco
is 0.54m and 0.64m in home and office deployments, respectively.
Under stressful conditions in the public arena deployment, the me-
dian localization error approaches 1.3m which is proportional to
the distance of the links. The higher error rate in this area is due
to rich multipath propagation and lower resolution of multipath
estimates. In addition, the public arena deployment contains NLoS
conditions due to obstacles in the LoS path such as furniture and
glass walls. We point out that the reception of direct path is essen-
tial for MonoLoco’s localization algorithm, but the results show
that it is robust to partial LoS blockage. These results show that
MonoLoco’s accuracy is comparable to state-of-the-art indoor lo-
calization systems that use multiple APs [18, 22, 47], or frequency
hopping for ToF measurements [27, 40].

Figure 8: The cumulative distribution of orientation error
shows that themedian error varies between 3.5 to 10 degrees
across environments with different multipath complexity.

5.4 Orientation Accuracy
Besides localization, MonoLoco provides the orientation informa-
tion. In the experiments performed in four environments shown in
Figure 5, random orientations are chosen for each target location
ranging between 0 to 2π . As seen in Figure 8, MonoLoco achieves
a median orientation error of 3.5 degrees in anechoic chamber, 4.2
degrees in home, 5.5 degrees in office deployments, and 10 degrees
in public arena deployment. The main reason for MonoLoco’s high
performance in estimation of the orientation is that orientation
is mainly derived from AoA and AoD of the direct path, which is
the dominant component in the received signal, and therefore less
prone to multipath resolution error.

MonoLoco achieves high accuracy in estimating location and
orientation for two main reasons. First, MonoLoco’s multipath
super-resolution algorithm resolves multipath components more
accurately by using a 3D joint estimation. Second, MonoLoco jointly
computes the location and orientation by minimizing the geometric
errors along multiple paths. Therefore, identifying the orientation
allows to compensate the errors in localization estimation.

6 SENSITIVITY ANALYSIS
6.1 AoA-AoD Estimation Accuracy
The goal here is to show that MonoLoco’s 3D super-resolution algo-
rithm provides a more accurate AoA and AoD estimation than state
of the art. However, we don’t have the ground truth parameters of
the reflection paths in the realistic environments. Therefore, in Fig-
ure 9, we show the accuracy of the AoA and AoD estimations only
for the direct path. After running the super-resolution algorithm,
we choose the resolved AoA and AoD values that are closest to the
LoS path and calculate their difference from the ground truth values.
We compare this error with the 2D AoA-ToF estimation method pro-
posed in SpotFi [18]. To measure AoD with SpotFi, it is applied on
transmitting antenna array incident on the first receiving antenna.
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(a) AoA Estimation error (b) AoD estimation error

Figure 9: MonoLoco’s 3D super-resolution algorithm im-
proves both (a) AoA and (b) AoD estimation in comparison
with SpotFi’s 2D approach [18].

Figure 9(a) plots the CDFs for AoA estimation error for all links
in all experiments. MonoLoco achieves median AoA accuracy of
4.02 degrees better than that achieved by SpotFi. In AoD estimation,
shown in Figure 9(b), MonoLoco achieves an improvement of 4.53
degrees in the direct path error. The reason for the higher perfor-
mance of MonoLoco compared to SpotFi is that a larger sensor array
consisting of 3 transmitting antenna, 3 receiving antenna, and 30
subcarriers (3×3×30 = 270) is used, which provides larger aperture
to separate multipath components. In addition, in AoD estimation,
both methods converge to similar error rates in 80th percentile of
the error. This is more a limitation of the linear antenna array; any
method will produce higher error when the incident angle of the
signal approaches the angle of the array.

6.2 Impact of Distance
Next, we evaluate the impact of the distance between two transceivers
on location and orientation accuracy. Figure 10 plots the distance
between each target location and the AP against localization and
orientation error in the 4 deployments. In Figure 10(a), we observe
that the average localization error increases with the increase of the
distance between two nodes. This is primarily due to the reduced
signal-to-noise ratio at greater distances, which results in lower
accuracy in multipath resolution (especially for reflected paths). In
addition, the majority of target locations with long distances belong
to the public arena deployment which is a cluttered environment
with narrow corridors and complex multipath propagation.

It should be noted that the population of the experimental loca-
tions is not uniform across different distances with a lower density
around large distances (> 5m). This imbalance is taken into ac-
count in calculation of 90%-percentile confidence intervals, which
appeared as an increasing pattern across distances. On the other
hand, the localization accuracy is provided for each environment
separately in Figure 7 since the distribution of link distances are
not uniform in all experimental environments. In Anechoic cham-
ber where link distances are between 0.85m to 2.7m, the median
localization error is 25cm. In home and office environment with
link distances between 1.1m to 5.5m, the location error is 0.54m to
0.64m. Finally, in the public arena with link sizes between 1.5m to
12.7m, the median accuracy is 1.3m. Therefore, we can conclude
that the accuracy is proportional to the distance of the nodes.

(a) (b)

Figure 10: The average (a) localization, and (b) orientation
errors increase as the distance between the target location
and the AP increases.

Figure 10(b) shows the orientation accuracy against the distance
between each target location and the AP. Although it is expected
that the average orientation error increases with an increase in
distance, our observations show the distance is not the main factor
in the accuracy of orientation estimates. The reason is that orienta-
tion is mainly calculated from the AoA and AoD of the direct path
which carries the dominant signal power, thus less prone to the
additional noises from further distances. Theoretically, the accuracy
of the resolved angles is the main factor affecting the orientation
estimation. The resolution of subspace methods such as MUSIC
degrades as the incident angles approach the edges of the spectrum
(e.g. −π and π in linear antenna arrays). Therefore, for a linear
antenna arrangement, the accuracy of the orientation estimation
would be lower if the target’s antenna array is either perpendicular
or in-line to the AP’s array.

6.3 Impact of Number of Packets
Section 4.2.3 describes how MonoLoco combines data from multi-
ple packets, if available. Figure 11 shows how this approach affects
localization accuracy as the number of packets used for localiza-
tion is changed from 7 packets to 50 packets. Each line represents
the cumulative distribution of the combined error in all four en-
vironments for a given number of packets. Even with 7 packets,
MonoLoco achieves a median localization accuracy of 0.84m using
all deployments including the public arena, compared to 0.5m ob-
tained using 50 packets. With only 1 packet, it was able to achieve
0.7m error in the home and offices and approximately 2m error
in the public arena. These results indicate that MonoLoco is able
to achieve location estimates with reasonable accuracy with only
the first few packets, and gets diminishing returns as more packets
are received. Although some nodes will want the highest accuracy
possible, this speed can be beneficial in cases when the target can
only send a small number of packets or needs a location estimate
quickly.

7 LIMITATIONS AND FUTUREWORK
One limitation of multipath triangulation is that it relies on the
existence of a propagation path going directly from transmitter to
receiver. The evaluation demonstrates that it works well even in
NLoS scenarios where the direct path is not the strongest signal,
but in the case of complete blockage it will actually produce the
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Figure 11: The cumulative distribution of localization error
for 7, 20, and 50 packets shows that MonoLoco works well
with small number of packets. All target locations in 4 de-
ployments are aggregated in this graph.

wrong location estimate. Currently, all other decimeter-level WiFi
localization systems also have this limitation, and localizing targets
with no LoS path is still an open problem. A second limitation of
multipath triangulation is that it requires a 3-element antenna array
on both the transmitter and receiver, similar to Chronos [40]. As
such, it cannot localize/orient small devices such as smart phones
or smart watches that typically have only one antenna. However,
many WiFi devices including laptops, APs, robots, and smart ap-
pliances do have 3-element antenna arrays, which are becoming
more common with MIMO technology. MonoLoco can be used by
a single autonomous robot to localize multiple APs, which could
in-turn be used to localize single-antenna devices using protocols
such as SpotFi [18]. Moreover, the presence of the 3-element array
on the target is what enables orientation inference. Finally, multi-
path triangulation relies on first order reflections and assumes that
the second order reflections are too weak to be resolved. In indoor
environments, it is rare to receive a second order reflection, but if
so, we can filter out these reflections in the post-processing step
and use another pair of paths.

The main contributions of this paper are the new multipath tri-
angulation techniques, and the 3D super-resolution algorithm to
estimate the geometric features of multiple paths. These techniques
are not limited toWiFi, and can be used inmanyways besides single-
device WiFi localization. MonoLoco is just a proof-of-concept for
the wide range of applications where these techniques can produce
substantial gains such as in indoor mapping, object imaging, or
device-free localization. In future work, we plan to explore how
MonoLoco could interact with WiCapture [19], which uses multi-
path reflections to provide accurate motion tracking. WiCapture
can only get relative motion and not absolute position, so these two
systems are complementary and could be combined. Additionally,
the current version of MonoLoco uses a subspace super-resolution
algorithm to resolve multipath features with a linear antenna array.
However, the fundamental methods are independent of the multi-
path resolution technique and the antenna configuration. Therefore,

we will explore how MonoLoco’s performance could be improved
by advances in multipath resolution such as the recent works in
Maximal Likelihood Estimation techniques [46], larger antenna
arrays, or circular antenna arrays.

8 CONCLUSION
This paper presentsmultipath triangulation, a new localization tech-
nique that leverages multipath reflections to estimate the location of
a target and a reflector with respect to the receiver.We usemultipath
triangulation to developMonoLoco, the first localization system that
provides decimeter-level localization and orientation information
without any information sharing or coordination across multiple
nodes. A single WiFi node or access point can localize any other
WiFi transmitter that it hears. The protocol is fully piggybacked on
top of the WiFi protocol. We expect multipath triangulation and its
use of multpath reflections for localization to lead a universal para-
digm shift in IoT where the WiFi in every home and office can act
as an efficient non-intrusive yet omnipresent sensing system which
does not require new sensor hardware installation. We believe that
multipath triangulation is more widely applicable to protocols other
thanWiFi and for problems other than target localization, including
device tracking, indoor mapping, object imaging, and device free
tracking, which are among our future works.
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