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Abstract—In this paper, we consider a variant of the multi-
target tracking problem in which the tracking region is divided
into zones and targets can only be monitored as they transition
between these zones. We call this the transition tracking problem.
The key challenge in Transition Tracking is to estimate the num-
ber of targets in the tracking region without being able to sense
all targets simultaneously. In this paper, we propose an approach
to the Transition Tracking problem called TransTrack. Unlike
most other tracking algorithms that maximize the likelihood of
the sensor data, TransTrack applies penalty functions to find the
minimum number of targets that can explain the sensor data.
These penalties allow tracks with larger numbers of targets only if
they have sufficiently fewer errors than other, alternative tracks.
To evaluate this approach, we apply TransTrack to a dataset
containing 3275 transitions between rooms in a home. We observe
an average room tracking accuracy of up to 94.5%.

I. INTRODUCTION

The multi-target tracking problem (MTT) [1] is essential
to the functioning of many applications including air traffic
control, robotics, and biomedical research. The most general
form of this problem typically involves an unknown number
of targets that move continuously throughout a region and that
can appear or disappear [2]. Sensors estimate the positions of
the targets at periodic intervals and also estimate identifying
properties of the targets such as size, color, or shape. These
measurements are subject to noise and the sensors may also
generate false positives (a.k.a. false detections due to clutter)
and false negatives (missed detections). In practice, the targets
are typically observed with periodically scanning sensors such
as a RADAR, an imager, or a LIDAR that can monitor the
entire tracking region.

In this paper, we consider a variant of MTT in which
the tracking region is divided into zones and targets can
only be monitored as they transition between these discrete
set of zones. We call this the transition tracking problem.
This problem formulation is representative of an important
set of real-world problems where complete coverage of the
sensing region is not practical. For example, vehicle sensors
are typically installed only at major intersections and do not
cover the entire road network. Similarly, people sensors such
as security cameras are typically installed at entryways and
corridors but do not cover the entire building. As such, people
and vehicles can be tracked as they transition between zones
of the building or road network, but their position is not
monitored while inside a zone.

Unlike traditional MTT, the sensors in transition tracking do
not estimate the position of the target. Instead, they estimate
the destination zone of the target as it passes through the

transition area. Just like traditional MTT, sensors gather iden-
tifying properties of the target (e.g. size, color, or shape) for
the purpose of data association, and are subject to three types
of errors: sensor noise, false positives, and false negatives.

The key challenge in Transition Tracking is to estimate
the number of targets in the tracking region without sensing
all targets simultaneously, i.e. while sensing only the zone
transitions of a target. The problem arises when spurious data
produce a phantom target: a target that does not correspond
to an actual object in the real world. Most tracking systems
deal with phantom targets by periodically sensing all targets,
e.g. with a radar scanner. In Transition Tracking, however,
targets can remain (unobserved) in a zone for long periods
of time and the tracking system cannot differentiate between
a stationary target and a phantom target. Therefore, existing
tracking algorithms that solve for a maximum likelihood
solution will always overestimate the number of targets in
the tracking region: phantom targets help explain spurious
data, which increases the likelihood, but never generate data
themselves and so never decrease the likelihood.

In this paper, we propose an approach to the Transition
Tracking problem called TransTrack that jointly estimates
the number of targets and their zone locations. Unlike most
other tracking algorithms that maximize the likelihood of the
sensor data, TransTrack applies penalty functions to find the
minimum number of targets that can explain the sensor data.
First, it creates a target penalty for having a larger number
of targets in the tracking region, and applies this penalty only
when a sensing error is observed. The intuition behind this
approach is to allow tracks with larger numbers of targets
only if they have sufficiently fewer errors than other tracks.
Second, it creates a mover penalty for the number of targets
that have moved since the last error. Again, this penalty is
only applied when a sensing error is observed. The intuition
behind this approach is to eliminate tracks in which different
phantom targets are used to explain each sensor reading.

To evaluate, we modify a traditional multi-hypothesis track-
ing (MHT) algorithm to incorporate the TransTrack principles
described above. We used the MHT to reduce computation
time and TransTrack could also have been implemented as
a Hidden Markov Model or Particle Filter. We then applied
this implementation to a dataset created by the Doorjamb
sensor [3], which is designed to sense the height and direction
of people as they transition between rooms in a home. We use
data from 3 controlled studies and 6 days of real-world in-situ
deployment involving 2 to 3 participants and totalling 3275
doorway crossings. We observe an average room accuracy



of 94.5% and 88.2% in the controlled and in-situ studies
respectively.

II. RELATED WORK

The problem of multi-target tracking (MTT) has been
well explored by many prior works. We refer the reader
to Blackman [4] and Pulford [5], for a survey of MTT
methods. In this paper, we are interested in a variant of the
MTT wherein only the transition of targets from one zone
to another are sensed. One common approach is to directly
apply a sequential Bayesian estimation algorithm such as the
Kalman Filter, Hidden Markov Model (HMM), or Particle
Filter [6], [7], [8]. However, these approaches choose a track
by maximizing the likelihood of the data, which is not a
viable approach for Transition Tracking because the number
of targets is unconstrained and not all targets are sensed.
Thus, the maximum likelihood solution will typically contain
phantom targets in order to explain away any sensing errors.

Several other works have performed multi-target tracking
by creating sensing zones. For example, Oh [6], Wilson [9],
Kruger [10], Muller [11] treat the home as a graph of zones,
each with its own sensors. However, these works assume
that the sensors are located within the zones, whereas our
work assumes that the sensors are located on the transitions
between the zones. In other words, they assume complete
sensing coverage of the tracking region. Additionally, those
works assume the use of motion sensors, which do not have
identifying information such as size, color, or shape. Thus,
they do not need to address the data association problem in
the same way. TransTrack deals with the additional challenges
of observing target transitions rather than target states and, as
a result, uncertainty grows quickly about both the number of
targets and the state of each target.

The most similar solution to ours was developed for door-
way tracking [3], [12], [13] - wherein the identity and direction
of a target are sensed as it crosses the doorway. However, the
solutions presented here assume a fixed number of targets with
known identities, even though the occupants of a typical home
come and go at different times, and occasionally bring guests
into the home. Therefore, the algorithm that was analyzed did
not need to address the complexity of estimating the number
of targets in this environment, which is a key part to making
the doorway tracking solution practical. Even if an application
does not want to track guests, they can cause errors for resident
tracking if the system cannot differentiate the guests from
the residents. Consequently, there is a need for a tracking
algorithm that tracks a variable number of targets by sensing
only their transitions.

One common approach to the MTT problem is the Multi-
Hypothesis Tracking algorithm (MHT), which is a deferred
logic technique that delays uncertain data associations until
more data become available by maintaining and scoring several
alternative hypotheses. Originally developed for radar tracking
systems [14] where the measured features are a set of discrete
blips, it has since seen use in a diverse set of applications
like pedestrian tracking [15], eddy current tracking [16],

opponent player tracking in autonomous soccer robots [17]
etc. However, inherent to these applications is the concept of
periodically observing all targets in the tracking region, which
is not a valid assumption in the transition tracking problem.
To the best of our knowledge, this is the first work applying
MHT in a multi-target transition sensing context.

III. APPROACH

There are two parts typically to a transition tracking system:
(i) the signal processing phase which handles the raw transi-
tion sensor data and produces a discrete set of transition events
(observations), and (ii) the tracking phase which operates on
the output of signal processing and produces a discrete set
of zone locations for each target. This paper focuses on the
latter. The tracking algorithm must deal with any mistake
made by the signal processing algorithm - viz false positives
(FP), false negatives (FN), identity errors (IE) and direction
errors (DE). Moreover, since we model a variable number
of targets, the tracking algorithm must seek to prevent M
targets from explaining away N-target data (where M 6= N).
We point out that the tracking area could be frequented both by
known identity targets (henceforth referred to as dwellers), and
unknown identity targets (referred to as visitors). The tracking
algorithm must be able to reason out between the two target
types and track them.

We first define some terminologies. A track refers to a
sequence of locations (zones) of each target. The score of
a track denotes its quality. The state of a track contains
enough information so that its score can be updated on each
observation. It typically contains the current location of the
targets. We next describe how the state of a track gets modified
and its score evaluated in transition tracking.

Phantom Target Problem : In Transition Tracking, targets
can remain stationary for long periods of time in a zone
without being detected. Consequently, observations that are not
easily explainable by existing targets will trigger the creation
of phantom targets: spurious targets created by the tracking
algorithm. For instance, consider a tracking area with two
targets in it. As the two targets move, they cause sensing errors.
We wish to prevent choosing those tracks which have extra
(phantom) targets that sit idle and then move to explain these
error events (caused by the two real targets). Such phantom
targets can be brought into the tracking area by a track in
several ways - e.g. (i) via a FP entry event, (ii) by treating
the exit observation of a real target to be a FP and retaining
the target, (iii) by treating the exit of a real target to be a
DE, and bringing in another target, resulting in two phantom
targets etc. As these phantom targets are unobservable until
they actually move, there is no penalty in having them sit
idle indefinitely, until an event occurs which no other target
can explain. Indeed, the likelihood of any given data set will
increase with a larger number of phantom targets. We refer to
this as the Phantom Target problem.

To address this, we define an objective function that penal-
izes tracks based on the number of targets present, on non-
compliance with an observation. The goal is to choose tracks



with the minimum number of targets required to explain the
observed data. We refer to this balance between phantom tar-
gets and unexplained observations as the target-error tradeoff.

Hidden Target Problem : However, such an objective
function now suffers from the Hidden Target problem; since
idle targets are unobserved, targets that are idle for a long
period of time are evicted out of the tracking area with the goal
to minimize the number of targets explaining the observations.
To mitigate this, we incorporate a second penalty factor that
penalizes a track based on the number of targets who actually
move. In other words, a track does not get penalized for having
idle targets. Using the two penalty factors together prevents
tracks from having different phantom targets explain each
observation. The notion of mover penalty can be incorporated
in many ways: (i) by calculating the number of movers since
the last non-compliance, (ii) by ranking targets based on their
total number of moves, and then selecting the highest ranked
mover since last non-compliance etc. We use the former. As a
result, to capture this notion of movers, the state of a track is
augmented with the list of movers since last non-compliance.

The non-compliance of a track with the sensor observation
suffers a penalty depending on the error-type. We refer to
such a non-compliance as an ‘inferred error’ (e.g., if the
observation says someone moved from zone z1 → z2, but
the track moves a target from z2 → z1, then it has inferred
a DE, and suffers a penalty). The other inferred error types
are IE, FP and FN. Among these error types, IEs alone are
not target-agnostic. Therefore, performing data association
in the presence of visitors requires a notion of identity to
be incorporated into a track’s state. Addressing this by the
inclusion of the identity vector for each target (containing its
history of identity assignments) into track state achieves two
goals: (i) data association for visitors can be performed by
comparing the observed value with past values, (ii) prevention
of a visitor from impersonating an dweller by better complying
with the observations via techniques like T-Test. Summarizing,
in transition tracking, for tracks to progress and be scored, the
current location of targets, the list of movers since last non-
compliance and identity vectors for each target become part
of a track’s state.

We capture these concepts via the approximate tracking
technique of Multiple Hypothesis Tracking (MHT). Our im-
plementation differs from classical MHT in that it performs
multi-target tracking in the presence of infrequent observation
of targets (transitions) as opposed to an entire field-of-view
(FoV) scan.

IV. IMPLEMENTATION

In this section, we explain how we incorporate the
TransTrack concepts into the classical Multiple Hypothesis
Tracking (MHT) [14] algorithm. These concepts could equally
be incorporated into other tracking algorithms, such as the
HMM, but doing so greatly increases the state space. We chose
to implement with the MHT because several heuristic algo-
rithms enable computational tractability, albeit at the expense
of optimality. To understand how the classical MHT must be
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Fig. 1. The overall operation of a MHT (adopted from [4]).

modified to incorporate TransTrack concepts, we explain each
of the key MHT steps below, including our modifications.

Initialization: Let Z = {z0, z1, ... z(N-1)} be the set of N
possible zones a target can be in, with z0 denoting the outside.
We abbreviate the tracking area (all zones besides the outside)
as TA. Next, let T be the maximum number of targets trackable
by the system. Let Td be the number of dweller targets and Tg
be the maximum number of visitors trackable, such that Td +
Tg = T. We define a target state tuple after the oth observation
to be a T-element tuple containing the zone location of the T-
targets tracked - viz ρo = (s1, s2, ... , sT) where si ∈ Z. Let
δt be the identity vector of a target t - i.e. the list of identity
values for the transitions assigned to target t. Let M be the
list of movers since the last inferred error. A hypothesis Hi
refers to one possible explanation of the o observations, and
thus exists as [(ρ1, ρ2, ... ρo) , (δ1, δ2 ... δT ), M]. This can be
understood as a sequence of target state tuples according to Hi,
identity assignments made to each target, and the list of movers
since Hi’s last inferred error. Thus, as per TransTrack’s state
definition, after the oth observation, the oth target-state tuple
(most recent zone location of targets ρo), the identity vector
for each target (δ1, δ2 ... δT ) and the list of movers since last
inferred error (M) constitute the state of a hypothesis.

On start-up, TransTrack starts with a blank slate, and con-
siders each of the T targets to be equally likely in each of the
N zones. This results in the creation of NT initial hypotheses.
The identity vectors of dweller targets are initialized to the
known value, while those of visitors are set to φ. E.g., consider
a two-target (T=2) case in a 3 zone state-space {z0, z1, z2}
with one dweller target (Td=1) of known identity id1, and
a maximum of one visitor (Tg=1). Then, two of the initial
hypotheses are: H1 = [ [(z0, z1)], ([id1] ,φ), φ] and H2 = [
[(z1, z2)], ([id1],φ), φ]. H1 thinks only the visitor target is in
the TA (in z1), and his identity is unknown yet. H2 is another
hypothesis which thinks both targets are inside - one in z1
and another in z2. Both hypotheses have no movers since last
inferred error (since an error hasn’t happened yet).

Figure 1 shows an overview of the classical MHT algorithm,
adopted from [4]. We next describe how each block in this
diagram behaves in TransTrack.

Gating: Gating determines if an observation can be phys-
ically caused by a target. In classical MHT, where the entire
FoV is scanned, gating helps eliminate certain impossible data
associations based on the kinematics of the moving object.
However, in transition tracking gating is of little help because
the sampling period (how often a target can be observed) is
large relative to the potential speed of the target. E.g., a target
can remain idle in a zone for 1 minute but it can also move



to the other end of the TA via a small number of FNs within
the same 1 minute. This makes most observations in the TA
ambiguous. The presence of IEs exacerbates this problem. As
a result, transition tracking does not benefit from gating as
each observation become explainable by many targets.

Hypothesis formation: The hypothesis formation step is
similar to conventional MHT. Here, the current set of hypothe-
ses is extended by considering all possibilities. In transition
tracking this means every observation causes each hypothesis
to duplicate itself upto (2T+1) times and progress as:

1) Someone who is inside and has the transition area within
his gate, has moved through it in either direction

2) Someone who is outside and has the transition area
within his gate, has come in, and moved through it in
either direction

3) Observation was a false detection
For example, consider a 3-target scenario in a 3-zone state

space (z0 ↔ z1 ↔ z2), where z0 ↔ z1 is the exterior
transition sensor. Upon detecting a z1 → z2 transition event
with observed identity idobs, a hypothesis ending in target-
state tuple (z1, z2, z0), say [ ... (z1, z2, z0) , (δ1, δ2 , φ), {t1}
] would duplicate itself (2T+1) times and progress them in the
following way:
H1 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}]

FP−→ [...(z1, z2, z0), (δ1, δ2, φ), φ]

H2 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}] −→ [...(z2, z2, z0), (δ
′
1, δ2, φ), t1]

H3 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}]
1FN,DE−→ [...(z1, z2, z0), (δ

′
1, δ2, φ), φ]

H4 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}]
1FN−→ [...(z1, z2, z0), (δ1, δ

′
2, φ), φ]

H5 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}]
DE−→ [...(z1, z1, z0), (δ1, δ

′
2, φ), φ]

H6 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}]
1FN−→ [...(z1, z2, z2), (δ1, δ2, [idobs]), φ]

H7 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}]
2FN−→ [...(z1, z2, z1), (δ1, δ2, [idobs]), φ]

where, δ
′
1 = δ1 ⊕ idobs , δ

′
2 = δ2 ⊕ idobs, and ⊕ denotes append

H1 is the hypothesis that thinks the observation is a false
detection. H2, H3, H4 and H5 move the two targets inside the
TA through the (z1,z2) sensor in either direction. H6 and H7
hypothesize that some target from the outside has come in and
transitioned in either direction. Hypotheses H3, H4, H6 and
H7 think that some observations have been missed (FN). Note
that each hypothesis also appends the observed value to the
identity vector associated with the hypothesized mover. We
also point out that the list of movers since last inferred error
gets reset ({t1} becomes φ) whenever an error is inferred.

Next, each hypothesis explores the possibility that someone
inside has exited the TA after the current observation via
a missed detection. For example, H7 duplicates itself three
times, and advances them the following way:
H8 : [...(z1, z2, z1), (δ1, δ2, [idobs]), φ]

FN−→ [...(z0, z2, z1), (δ1, δ2, [idobs]), φ]

H9 : [...(z1, z2, z1), (δ1, δ2, [idobs]), φ]
2FN−→ [...(z1, z0, z1), (δ1, δ2, [idobs]), φ]

H10 : [...(z1, z2, z1), (δ1, δ2, [idobs]), φ]
FN−→ [...(z1, z2, z0), (δ1, δ2, φ), φ]

Note that the visitor target’s identity vector is reset on exit
(H10). This is to capture the intuition that no two visitor
targets are necessarily the same. Given that there are NT initial
hypotheses, (NT ) ∗ (T ∗ (2T + 1))D hypotheses are formed
after D events. This exponential explosion of hypotheses
necessitates track pruning.

Hypothesis evaluation/deletion: Temporal pruning tech-
niques such as n-scanback [16], [18], [17] which are com-
monly employed in conventional MHT, cannot be applied
in our case as a target can remain idle in a zone for an
indefinite amount of time. The intuition behind n-scanback
is that ambiguities get resolved in atmost n scans. Secondly,
given the large gating challenge, n cannot be large, as it will
result in storing a large number of hypotheses. For a TA of
8 zones and at most 4 targets, 3-scanback itself results in the
maintenance of over 50 million hypotheses.

Therefore, we develop an alternate two-step pruning strategy
that leverages the discretization of states. First, if two hypothe-
ses have the same current zone location of each target, same
movers since last inferred error and same identity statistic
(e.g. mean of identity vector) for each target, then only the
better one is retained (i.e. either H1 or H10 in the above
example). We refer to this as equal state pruning. To further
keep the state space tractable and maintain enough diversity
and coverage across all possible zone locations, we maintain
the top-M (M=4) hypotheses ending in each possible target
state tuple. This results in the constant maintenance of M ∗NT

hypotheses. However, choosing one hypothesis over another
necessitates a scoring function.

Score function: Scoring in MHT is done in an application-
specific manner depending on the constraints of the problem.
The aim of our scoring algorithm is to address the phantom
target and hidden target problems. As a result, each hypothesis
on non-compliance with an observation suffers a penalty
depending on the number of targets present and the number
of movers since the last inferred error. More formally, a
hypothesis after the ith observation gets penalized according
to the following score function:

pen(i) = pen(i− 1) + α ∗
∑

j∈E
ejwj (1)

where: E : set of inferred errors {FP, FN, DE, IE}
ej : error penalty associated with the inferred error
wj : weight of the inferred error type
α : correction term for target-error tradeoff = (m + t + k)
t : number of targets in the TA during the error
m : number of movers since last inferred error (m≤t)
k : constant offset to eliminate bias towards certain tracks

We next explain each term in the above score function:
ej Error Penalty – Each noncompliance by a hypothesis

with an observation suffers a penalty depending on the inferred
error type. TransTrack makes use of a probability value passed
up from signal processing, whenever available, and a unit
penalty otherwise. FNs suffer a penalty equal to the minimum
distance to the transition sensor. We infer IEs for visitor targets
by comparing the observed value with the visitor’s maintained
identity value (e.g. mean), based on any past observations.
Since, a visitor’s identity is learnt on-line, it can impersonate
an dweller by better complying with the observations, resulting
in incorrect data association. To eliminate this, each hypothesis
upon exit of a visitor performs an equal variance T-test (p
= 0.05) between that visitor’s identity vector and the identity
vector of each dweller who has been outside since the visitor’s



Time τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9
GT track (H1) (z1, z2) (z1, z3) (z1, z4) (z1, z3) (z1, z3) (z1, z4) (z1, z5) (z1, z4) (z1, z3) (z2, z3)
Inferred error of H1 - DE IE - FP - DE & IE - IE -
Score (H1) 0 3 6 6 9 9 15 15 18 18
Chosen Track (H2) (z1, z2) (z0, z2) (z0, z3) (z0, z4) (z0, z3) (z0, z3) (z0, z4) (z0, z5) (z0, z4) (z0, z3) (z1, z3) (z2, z3)
Inferred error of H2 - FN DE IE - FP - DE & IE - IE FN -
Score (H2) 0 3 5 7 7 9 9 13 13 15 17 17

TABLE I
EXAMPLE OF Hidden Target Problem: GT TRACK (H1) GETS EVICTED BY AN ALTERNATE HYPOTHESIS (H2) AT TIME τ9. H2 HAS A LOWER SCORE

BECAUSE THE IDLE TARGET WAS EVICTED AFTER τ0, AND BROUGHT BACK IN BEFORE τ9.

entry. A p-value greater than 0.05 implies that the identity dis-
tributions are similar, and the visitor hypothesis gets evicted.

wj: The weight of the inferred error type – This term
captures the likelihood of each error type across different error
types. This is a sensor property. E.g., if missed detections are
less likely than false detections, then wfp < wfn.

t: The number of targets in the sensing-area during the error
– This term is used to address the Phantom Target problem.
To eliminate any bias on the hypothesis which has all targets
outside (i.e. t = 0), we use (t+1)∗Σejwj . As mentioned earlier,
using the target-factor alone in scoring results in hypotheses
being subject to the ‘hidden target problem’. Table I shows an
example of this problem with two known-identity targets t1
and t2. Let us say that the arrangement of the zones are (z0
↔ z1↔ z2↔ z3↔ z4↔ z5), where z0 denotes the outside-
zone. τ0 is the time that target t1 becomes idle at zone z1 and
τ9 is the time t1 moves out of z1. At τ9, hypothesis H2 evicts
H1 with a lower score. This is because H2 having incorrectly
evicted the hidden target t1 out of the TA, ends up with a
lower total penalty. For brevity sake the identity vectors are
not shown, as they are always identical for H1 and H2.

We next calculate the bounds for the eviction of a hidden
target - i.e. the minimum number of errors an idle target can
tolerate before being evicted by a hypothesis with a lower
score. For simplicity of derivation, we assume uniform unit
weighting. Let τa be the time that t1 becomes ‘idle’, and τb
be the time that t1 makes a transition again. Let d denote
the minimum number of hops from the ‘hidden’ zone to the
outside. Between τa and τb, targets t2 to tT move and cause
e errors. We wish to compare two hypotheses, H1 : t1 rightly
remains idle, and H2 : t1 gets evicted via FNs just after τa,
and brought in via FNs just before τb.

Score (H1) = e errors caused with T targets in TA
Score (H1) = (T + 1) ∗ e
Score (H2) = FN to evict t1

+ e errors caused with (T - 1) targets in TA
+ FN to enter t1

Score (H2) = (T + 1) ∗ (d) + ((T − 1) + 1) ∗ e
+ (T + 1) ∗ (d)

To retain t1, score(H1) < score(H2). Therefore,

(Te+ e) < 2d ∗ (T + 1) + Te

=⇒ e < 2d ∗ (T + 1) (2)

Consequently, in a 2-target case, a static target in the leaf-node
(d=1) gets evicted after 6 errors of the other target.

m: The number of movers since last inferred error – This
term is used to mitigate the Hidden Target problem. As before,
to eliminate any bias towards an all FP track (i.e. m = 0), we

Study Participant Heights (m) # crossings
Controlled Study1 1.63 , 1.80 400
Controlled Study2 1.63 , 1.80 398
Controlled Study3 1.52 , 1.63 , 1.75 516
In-situ study (6days) 1.52 , 1.88 1961

TABLE II
EXPERIMENT DETAILS: A TOTAL OF 9 STUDIES WITH 3275 DOORWAY

CROSSINGS INVOLVING 2 TO 3 PARTICIPANTS WAS PERFORMED

use the factor of (m + 1). This results in our score formula
of: (t+m+ k) ∗ Σejwj where k = 2.

We next analyze this scoring function using the same
notation. For the sake of simplicity in the derivation, let us
consider that every target except t1 moved between each of
the e inferred errors. This consideration is just for ease of
understanding as the derived inequality is independent of the
actual number.

Score (H1) = e errors caused with T targets in TA
Score (H1) = (T + T + 2) + ((T − 1) + T + 2) ∗ (e− 1))

Score (H2) = FN to evict t1 +

e errors caused with (T − 1) targets in TA+

+ FN to enter t1

Score (H2) = (1 + T + 2) ∗ (d) + ((T − 1) + (T − 1) + 2) ∗ e)
+ (1 + T + 2) ∗ (d)

To retain t1, score(H1) < score(H2). Therefore,
(2 + 2T ) + (2T + 1) ∗ (e− 1) < (3 + T ) ∗ (2d) + 2Te

=⇒ e < ((3 + T ) ∗ 2d)− 1. (3)

Comparing inequalities 2 and 3, it can be shown that ( (3+T)
* 2d ) - 1 > 2d*(T+1), since d >= 1, confirming that the
bounds have increased. In a 2-target case, a static target in the
leaf-node now gets evicted after 11 errors of the other target.

In order to avoid growing memory costs, we define a
commit policy. After every observation, if all hypotheses agree
on a common prefix (i.e. they agree on the zone-locations of
each target, from event E0 to Ei), then the prefix is committed
to disk. Subsequent prefix checks happen from event Ei+1.

At any time instant, the lowest scored hypothesis is the best
hypothesis. We point out that the recursive nature of the score
function makes it unnecessary to have the complete dataset
to generate zone estimates, making TransTrack conducive for
near real-time tracking.

Filtering/Prediction: In classical MHT, every hypothesis
uses a motion model to predict the location of each target for
the next scan. However, in transition tracking because of (i)
the possibility that a target can stay in a zone for an indefinite
amount of time, and (ii) the inevitability of large gates, no
prediction is made on the next location of a target.

V. EXPERIMENTAL SETUP

We evaluate our tracking algorithm with a doorway track-
ing application using a Doorjamb-like sensor setup [3] in a



detached home of 9 rooms (Figure 2) involving 2 to 3 persons
(targets). The system is mounted on top of each doorway
and measured the height and direction of a target as they
transitioned through the doorway. We perform 3 controlled
studies and 6 days of real-world in-situ deployment. The
diameter of the house was 4. This meant one could move
from one end of the state space to the other with just 4 FNs,
making each doorway transition event became explainable by
any of the targets. Table II describes details of each study
and its participants. The first two controlled studies had the
same participants. They were asked to leave all doors open
in Study1, but open and close doors as they performed the
experiment in Study2. This was to study the effect of errors on
tracking, as the movement of doors lead to signal processing
errors. Controlled Study3 had no constraints, and the partici-
pants were asked to enter, exit and walk around as naturally
as possible. Ground truth for the study was collected using
cameras installed on the doorway. To ensure that participants
lived naturally, the field of view of the cameras were restricted
in hardware to only the doorjamb of the doorway. The recorded
video was processed, to extract the identity and direction of
participant involved in the crossing.

We evaluate tracking using the Room Accuracy metric. This
metric evaluates if a person is ever detected in the correct room
during the time he was in that room. This is calculated as the
F-score of the room recall and room precision. Room recall is
defined as the fraction of the total number of room occupancy
periods (the time a person is in a specific room) in ground
truth where tracking also correctly placed the same person in
the same room at least once during that occupancy period.
Room precision, the complement to room recall, is defined
as the fraction of the number of room occupancy periods in
tracking, where ground truth also had the same person in the
same room at least once during that period.

We compare TransTrack against three baselines that can
track a variable number of targets and have the same set of
requirements as TransTrack. Our first baseline Nearest Identity
is a stateless approach to tracking that moves occupants based
on the identity data observed at the doorway, with no regard
to his previous location. It chooses an occupant based on the
height measurement and puts him into a room based on the
observed direction. Our second baseline, Nearest Neighbor is
a well-known stateful greedy target tracking approach [19],
[4]. Each observation is assigned to the occupant closest to the
doorway with heights used as a tie-breaker. The location of the
occupant is updated after an assigned observation. Our third
baseline K-best is a variant of [20] and maintains the K lowest
scored hypotheses after every observation. The K-value was
chosen such that its time and space complexity were identical
to that of TransTrack. No equal-state pruning is performed
here, but the score function is identical to TransTrack. To have
all algorithms on an equal footing, they are all started with a
known initial state of the home.

Finally, we use uniform unit weighting on all errors except
FNs. FNs have twice the weight for two key reasons : (i) the
signal-processing recall of our system is better than signal-
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Nursery

Bathroom

Outside

Outside

Hallway
    To 
Base- 
ment

Exterior door

Living Room
Mudroom

Fig. 2. Experiment scenario: Floorplan of experiment home with 9 rooms
and 2 exterior doors used to evaluate TransTrack

processing precision, and (ii) to increase the bound on the
hidden target problem. We start off by tracking a maximum
of 4 targets in a home (i.e. T = 4), and then study the behavior
as we vary the maximum number of targets tracked. We refer
to the targets with known identities as residents, and those
with unknown identity as guests.

VI. RESULTS

Figure 3 shows that TransTrack achieves the highest av-
erage accuracy of 94.5% and 88.2% in the controlled and
in-situ studies respectively. The Nearest Identity approach’s
average accuracy of 86.2% and 78.3% in controlled and in-
situ respectively is lower than TransTrack because it does not
use the future to disambiguate the past. The lower 73.2% and
65.1% average accuracy of the Nearest Neighbor approach can
also be attributed to the lack of use of future. However, the
maintenance of state exacerbates the problem here. K-best has
an average accuracy of 88.2% and 64.5%. It is lower than
TransTrack because of the absence of equal-state pruning.
Consequently, the K-best hypotheses have many hypotheses
with an equal last state, evicting out the desired hypotheses.
An average of 394397 hypotheses were pruned after every
observation via the equal state pruning strategy.

We also performed two additional analyses: (i) On com-
paring TransTrack with Doorjamb’s algorithm, we noted that
it performs almost as well as Doorjamb (average less than
5% off) even without assuming the number of targets at all
times. (ii) We also evaluated the algorithms by calculating
the average resident room accuracy, after making each of the
residents as guests. We noticed an identical trend to Figure 3
with TransTrack suffering an average accuracy drop of 3.8%.

Figure 4 shows how different parts of the scoring function
affect in-situ tracking accuracy. Simply maximizing the like-
lihood of the observations gives only 77.5% accuracy. This is
because of the presence of phantom persons who sit idle and
move to explain the errors of the real targets. The addition
of a mover penalty alone does not increase the accuracy as it
still suffers from the phantom effect. However, the addition
of a target penalty alone increases the accuracy to 81.6%.
This increase is because there is now a penalty of having
extra idle persons in the home. However, such an approach
suffers from the hidden target problem. Adding the mover
and target penalty together increases the accuracy to 83.5%.
As previously stated, a guest can still impersonate a resident
by complying with the observed heights better. We see that



Fig. 3. TransTrack consistently performs better
than the baselines. Nearest Identity and Nearest
Neighbor approaches suffer as they do not use
future information. The absence of equal state
pruning affects accuracy of K-best
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Fig. 4. Scoring function variants : The addition
of target penalty, mover and target penalty, explicit
guest reasoning and knowledge of initial state all
increase in-situ room accuracy over the maximum
likelihood approach

Fig. 5. Sensitivity analysis on the maximum
number of targets (T) tracked: As T decreases,
the accuracy of all algorithms increase. However,
TransTrack still continues to perform better than
other baselines.

the subsequent addition of explicit guest-resident reasoning
via the T-Test increases the accuracy to 85.4%. We next
notice that the subsequent addition of a motion model does
not increase accuracy. The motion model is that it takes a
target at least 1 second to pass through every room. In other
words, no hypothesis exists wherein a target t can explain the
doorway event of another target t’ which is H hops away,
if the last moved time of t is less than H seconds. Such a
motion model does not increase accuracy because we noticed
that the percentage of concurrent moves by persons is low, and
even during the times of concurrent moves TransTrack was
already doing a reasonable job in associating the observations
to targets. Finally, we notice that starting at a known initial
room location for each person increases the accuracy to 88.2%.

We next calculate room accuracy as we start varying the
maximum number of tracked targets (T) from 4 to 2. As seen in
Figure 5, decreasing T increases the accuracy of all algorithms.
This is because each observation can potentially be explained
by a lesser number of persons resulting in lesser ambiguity.
TransTrack which achieves 93.4% and 89.8% with T = 2 and T
= 3 respectively, still continues to consistently perform better
than the other baselines. Since the same trend can be seen in
the controlled study too, in the interest of space, we show the
graph for in-situ alone.

One of the main reasons for the performance difference
between in-situ and controlled studies was due to error-
clustering (bursts of errors). The boxplots in Figure 7 show
the number of FPs or FNs in any 20 event window for each
data set. It is seen that in in-situ, there exists several cases
in which more than half of the events in a 20-event window
are either FPs or FNs. Since TransTrack’s scoring assumes a
uniform error distribution, when such bursts of errors happen,
it tries to explain these erroneous events with extra persons,
as the height and direction estimates are inconsistent with the
targets at home. Consequently, the accuracy suffers. These
error bursts were mostly due to a target moving back and
forth near a doorway. Other causes were due to crouching,
moving hurriedly etc.

Next, we study the effect of removal of each error type on
tracking accuracy. Figure 8 shows that an increase in accuracy
is generally observed with the removal of each error type,
approaching 100%. This is because as errors get removed,

there is lesser ambiguity in data association for TransTrack.

Fig. 6. Degree of future analysis: Most of the ambiguities get resolved within
5 future events. As the inter-arrival time between nearly 90% of events is less
than 30 seconds, this roughly translates to within 150 seconds of future.

Since, TransTrack uses the future to disambiguate the past,
we calculate how much future is required to correctly resolve
a doorway crossing event, in the in-situ study. Figure 6 shows
that most ambiguities can be resolved within 5 future doorway
crossing events. To quantify this in terms of time, we looked
at the inter-arrival time between consecutive doorway events.
We noticed that nearly 90% of events arrive within 30seconds
of the previous event. This effectively means 5 future events
roughly translates to around 150 seconds of future. These
results indicate that TransTrack could support applications
such as HVAC control.

We next calculate another metric, Target Count Accuracy,
defined as the fraction of observations after which tracking
and ground truth had the same number of targets. To match
the ground truth doorway events with the tracking events, we
use the data-fusion algorithm of Kalyanaraman [21]. Figure 9
shows that TransTrack achieves nearly 30% better accuracy
than any baseline. The Maximum Likelihood approach gave
nearly 0% accuracy. TransTrack performs better than the rest
as it addresses the Phantom and Hidden Target problems.

#GT Targets #TransTrack Targets
0 1 2 3 4

0 7 25 9 5 2
1 6 154 47 11 0
2 1 12 1210 379 99

TABLE III
CONFUSION MATRIX COMPARING THE NUMBER OF TARGETS IN

TRANSTRACK WITH GROUND TRUTH(GT), AFTER EACH TRANSITION.
TRANSTRACK RARELY UNDER-ESTIMATES AND OVER-ESTIMATIONS ARE

DUE TO ERROR CLUSTERING (EXPLAINED IN FIGURE 7)

Table III shows the in-situ confusion matrix comparing the
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Fig. 8. Effect of error removal: As errors get
removed, there is generally an increase in accuracy
owing to lesser ambiguity

Fig. 9. TransTrack which addresses the Phantom
Target and Hidden Target problems tracked the
correct number of targets in a home better than
any of the baselines.

number of targets in the home in ground truth with TransTrack
(in terms of number of transitions). It is seen that TransTrack
rarely under-estimates. The over-estimation can primarily be
attributed to the error-clustering of Figure 7 (explained earlier).
However, these extra targets mostly remain idle, and eventually
end up getting evicted out of the house.

We point out that there is an inherent accuracy-complexity
trade-off in using TransTrack. Even though TransTrack
achieves higher accuracy than the greedy baselines, it trades-
off higher time and space complexity as it retains state infor-
mation to help in disambiguation. However, this is typically
not an issue for transition tracking in domains like homes,
given the low number of targets at any given time.

VII. CONCLUSION

In this paper, we present TransTrack, an approach to track
a variable number of targets by sensing only their transitions.
The presence of sensing errors and large sampling period rel-
ative to the potential speed of the target leads to uncertainty in
the number of targets. We show the existence of a fundamental
tradeoff between the number of targets tracked and the sensing
errors they cause. Our evaluation of TransTrack on 3 controlled
studies and 6 days of real-world in-situ data showed that it
consistently performed better than the baselines.

We believe that the findings presented here will become
more important with time as more diverse and non-invasive
sensors get deployed. For instance, we envision the evaluated
doorway tracking system to be augmented with motion sen-
sors, which can observe state. This warrants the need for novel
fusion tracking algorithms with transition sensors observing
identity, and state-observing sensors detecting presence. Such
algorithms could augment our findings with the well-studied
state sensing literature [6], [4], [18].
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