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ABSTRACT
A large amount of energy could be saved by detect-
ing home occupancy and automatically controlling the
lights, and HVAC. Existing occupancy sensors can de-
tect the motion of people but cannot detect people when
they are stationary. In this paper, we present a sys-
tem called Peripheral WiFi Vision (PeriFi), which ex-
ploits multipath reflections as individual spatial sen-
sors to increase the sensitivity of the conventional ap-
proaches. PeriFi analyzes each multipath component
independently, increasing sensitivity so it can directly
sense both moving and non-moving occupants.Our eval-
uations for 6 physical configurations with 11 different
occupancy states show that PeriFi can achieve 96.7%
accuracy, which translates to nearly 30% improvement
over the conventional approaches.
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1. INTRODUCTION
Human presence sensing has significant potential to

provide monetary and environmental benefits by saving
energy. Motion sensing is often used for lighting con-
trol and, although current systems often turn off the
lights when occupants are not in motion, these errors
can easily be fixed by moving or waving at the motion
sensor. However, they would cause major comfort issues
with heating and cooling control due to the thermal in-
ertia and resulting time lag. The ability to automati-
cally control air conditioning has been available for over
hundred years, but the potential energy saving have not
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been fully realized due to lack of a sensing system that
can detect human presence, and not just human motion.

Recent advances in wireless techniques such as MIMO-
OFDM have extended its use beyond simply a commu-
nication medium to that of a device-free human sensing
tool. The previous works that have explored the possi-
bility of inferring occupancy from WiFi signals [13, 8,
12, 7] focus on detecting motion of the target and mea-
sure the temporal variations of WiFi signals caused by
target movements as an indicator of occupancy. How-
ever, they suffer from high false negative rates since they
cannot differentiate an unoccupied room from a non-
moving person. Rich multipath distortions in indoor
environments is one of the main challenges of these sys-
tems, causing the signal disturbance produced by people
to be swamped in the noise distortion subspace due to
destructive interferences. This limitation is particularly
problematic for long sedentary activities such as movie
watching or sleeping.

To address this problem, we propose a new technique
called Peripheral WiFi Vision (PeriFi): using multi-
path signals to increase the sensing area and sensitivity
levels of WiFi sensing. The basic approach is to re-
solve multipath reflections and leverage each path as
an individual sensor, rather than treating it as just a
distortion. The intuition is that analyzing each path
independently allows more sensitive detection of distur-
bances caused on weak Non-Line-Of-Sight (NLOS) sig-
nals which would otherwise be swamped by the strong
Line-Of-Sight (LOS) signal when looking only at the
aggregated received signal. This allows the approach
to be more sensitive to small movements of a station-
ary target. In addition, people affect the multipath re-
flections even when they are perfectly still, while other
approaches require the person to be moving.

Instead of any special wireless hardware, we leverage
on the ubiquity of commodity WiFi devices. The pres-
ence of several WiFi-enabled devices or plug-in modules
deployed in every room of a home creates a wireless
mesh, which can serve as a sensor network and provide
rich information about the environment. To sense the
person’s presence, PeriFi firstly characterizes the multi-
path environment of an empty room by using subspace



methods [5, 9], which perform eigenspace analysis of the
signal’s correlation matrix. Then, it looks for changes in
that multipath environment such as (1) multipath vari-
ations in a time window caused by a moving person,
or (2) multipath attenuation and reflections caused by
a stationary (sitting or standing) person. To capture
these changes, PeriFi employs supervised classification
models with one-time training.

To implement PeriFi, we leverage the PHY layer Chan-
nel State Information (CSI) provided by commercial
WiFi cards, which offer fine-grained channel responses
at the granularity of OFDM subcarriers. We evalu-
ate PeriFi in 6 individual physical configurations with
11 different occupancy states resulting in 66 individ-
ual conditions and 96 minutes worth of data. Our ex-
tensive analysis and experiments show that the relative
phase information and multipath characteristics play a
key role in determining the occupancy specifically if the
target is stationary or completely still. Also, results
indicate that PeriFi can detect occupancy with 96.7%
accuracy, compared to the conventional solution with
56.1% and 76% accuracies.

2. RELATED WORK
Device-free passive detection with WiFi signals have

drawn much attention in the past years. Recent works
focus on fine-grained PHY layer CSI as a promising sub-
stitute for MAC layer RSSI. We can categorize these
works into three main approaches: fingerprint-based,
threshold-based, and respiration-based. Unlike PeriFi
which analyzes the multipath signals individually, all
of these approaches look at the aggregate CSI values,
which makes them less sensitive to fine movements with-
out relying on scenario-specific calibration.

The fingerprint-based approaches [13] measure the
similarity of CSI fingerprint of an occupied room with
the reference unoccupied condition. The intuition be-
hind this technique is that the disturbance of CSI val-
ues created by human motions reduce the similarity be-
tween occupied and unoccupied fingerprints. However,
similar to any fingerprinting approach, they require a
large database of all occupied scenarios in different lo-
cations, which is practically impossible due to random
movement behavior of occupants. The threshold-based
algorithms [8, 12, 7] define an individual metric as a
threshold line to differentiate occupied and unoccupied
conditions based on the temporal correlation of CSI val-
ues [8, 12], or the correlation of CSI values over multiple
frequencies [7]. Although these algorithms are fairly ac-
curate in detecting human motion, they are incapable of
detecting stationary or still occupants since the fine or
even absence of the target movements causes no measur-
able temporal or frequential variation of WiFi signals.

Apart from the above works, DeMan [12] proposed
respiration rate as a metric to detect stationary tar-
get by justifying a sinusoidal model and looking for
desired breathing frequency component in the signal.
Although the performance of this method is promis-
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Figure 1: an illustration of (left) multipath prop-
agation in the presence of a target, and (right)
additional phase shift of the incident signal in
the second antenna.

ing in extremely controlled scenarios, small body move-
ments or the working distance range limit the perfor-
mance and make it impractical for occupancy detection.
Besides these WiFi-based occupancy detection method
which use commodity devices, there some high resolu-
tion breath detection [2], and device-free localization [1]
systems, which require specialized bulky hardware and
radar techniques such as FMCW, thus cannot be imple-
mented by commercial products. We build PeriFi upon
noise-subspace methods [5, 6] to capture multipath re-
flections. Although these methods focus on better esti-
mation of the LOS signal by discarding the NLOS sig-
nals, PeriFi leverages all multipath components and use
each as a spatial sensor to infer occupancy.

3. PERIPHERAL WIFI VISION
Complex indoor environments cause wireless signals

to propagate along multiple paths, reflecting off of walls,
furniture and human body (shown in Figure 1). The re-
ceived signal is the combination of all these paths, thus
suffering from multipath interference. In the occurrence
of destructive inferences, the human body disturbance
may be canceled out in the aggregated signal. In addi-
tion, the properties of the received signal are dominated
by objects in the Fresnel zone of the LoS path, resulting
in a linear sensing region despite the omni-directional
nature of the antennas. So, in the presence of an occu-
pant in the NLoS area, the resulting disturbances are
weak and can be swamped by the LOS signal when look-
ing at the aggregate value.

To address this challenge, we leverage multipath re-
flections and analyze them independently to provide
peripheral WiFi vision. Each of these paths reveals
information about a different part of the physical en-
vironment and acts as an additional sensor. This in-
creases sensitivity by allowing LoS and NLoS paths to
be analyzed independently, thus can differentiate be-
tween empty room and an occupied room with a station-
ary or completely still target. We further improve the
sensitivity of this approach by leveraging the presence of
several WiFi-enabled devices in a building. PeriFi takes



Figure 2: PeriFi detects different occupancy scenarios based on changes in multipath characteristics
of empty room as well as stability of AoA spectrum in each angle.

advantage of these spatially diverse WiFi components
such as personal computers, smart TV, or thermostats
to create a wireless mesh that covers the home and can
view different aspects of a target simultaneously.

PeriFi leverages the PHY layer Channel State In-
formation (CSI) provided by commercial WiFi cards.
CSI provides a small version of fine-grained channel fre-
quency response at the granularity of OFDM subcarri-
ers. While previous studies [8, 13] show that CSI suffers
from arbitrary phase offsets due to Packet Detection De-
lay (PDD) and Sampling Time Offset (STO), we show
that the effect of these noises can be eliminated by con-
verting raw CSI values into multipath components. The
intuition behind this idea is that the novel multipath
resolution methods [6, 5] leverage multiple subcarriers
of a WiFi channel to eliminate phase offsets caused by
STO, and PDD, thus providing more accurate estima-
tion of the stationary environment. The details of our
data preprocessing method are explained in Section 3.1.

Similar to threshold-based algorithms, PeriFi requires
a prior multipath characteristics of the environment with
no human presence. However, unlike fingerprint-based
approaches, it doesn’t need scenario-specific calibrations
for all possible occupancy states. So, in the first step,
PeriFi characterizes the multipath components of an
empty room for each Tx-Rx link and converts each path
into multiple features over both time and space such as
the power, Angle of Arrival (AoA), and relative Time of
Flights between paths (rToF). Then, in a sliding window
fashion, PeriFi monitors and scans these paths multiple
times per second and uses a classifier to detect the pres-
ence of people. The details of multipath resolution algo-
rithm and extracted features are explained in Sections
3.2 and 3.3, respectively.

3.1 Data Preprocessing
Leveraging OFDM and MIMO technologies in the

current WiFi standards such as 802.11n, the commer-
cial WiFi cards can provide the overall attenuation and
phase shifts of the transmitted signal introduced by the
channel. This information is represented in the form of
CSI in the granularity of 30 subcarriers for 3 antennas,

CSI Matrix =

csi1,1 csi1,2 ... csi1,30
csi2,1 csi2,2 ... csi2,30
csi3,1 csi3,2 ... csi3,30



where csim,n is the CSI of mth antenna and nth subcar-
rier, which includes the received signal from all paths.

Each CSI value depicts the amplitude and phase re-
sponses of the channel. Although CSI phase values are
more sensitive to small changes in the environment, they
are prone to arbitrary errors caused by PDD and STO.
To address this issue, we leverage the constant behav-
ior of STO across antennas and the linearity of this
offset across subcarriers. On the other hand, our ob-
servations from extensive experiments [10] show that
the CSI phase is significantly noisy in the frequencies
with destructive interference. So, we sanitize the phase
values by using a similar technique as in [5], but for a
portion of subcarriers with no deep fading.

3.2 Resolving Multipath Propagation
Our approach to resolve multipath components builds

on well-established noise-subspace methods such as MU-
SIC [9]. The basic idea is that each propagation path
is received with a specific AoA, which introduces a cor-
responding phase shift across the antennas due to the
extra travel distance (shown in Figure 1). The intro-
duced phase shift of kth path with AoA of θk at mth

antenna is denoted as a function of AoA:

φ(θ) = e−j2πfd sin(θ)/c (1)

where d is the distance between antennas, c is the speed
of light, and f is the frequency of the transmitted signal.
The MUSIC algorithm uses this information and creates
a measurement matrix X based on the received signal
across antennas as:

X(t) = [x1(t), ..., xM (t)]T = a(θ)s(t) +N(t) (2)

where M is the number of antennas, s(t) is the received
signal vector at the first antenna and N(t) is the noise
vector. a(θ) is called the steering vector and expresses
the phase differences at the antenna array:

a(θ) = [1, φ(θ), ..., φ(θ)M−1]T (3)

The MUSIC algorithm relies on the orthogonality of
the eigenvectors of XXH corresponding to the noise
subspace and incident signals to compute the steering
vectors and deduce the AoAs. To capture reflections
from the human body, PeriFi builds on this founda-
tional technique and combines it with new innovations.



A recently proposed extension of MUSIC called Dy-
namic MUSIC [6] has been demonstrated to identify
the AoA of multipath reflections off a moving person
based on its phase incoherence with other signals due
to Doppler Shift. We leverage this technique for detect-
ing moving targets by resolving these reflections and
monitoring them individually.

To detect stationary targets, PeriFi characterizes the
static reflections of an empty room and monitors their
disturbances in the presence of a stationary or com-
pletely still person. For this purpose, we take advan-
tage of AoA-rToF joint-estimation MUSIC methods [5]
to fuse data across multiple subcarrier frequencies and
increase the resolution of AoA estimation. We omit
the mathematical derivations for brevity, but refer the
reader to the reference paper [5]. Figure 2 illustrates
the effect of a person’s presence on the resolved AoA
pseudo-spectrum for a sample experiment. The figure
contains the variations of the power values for each an-
gle across 1000 packets in a boxplot per angle. The
comparison of the unoccupied spectrogram with oth-
ers reveals that we can detect the presence of a person
inside the room either with changes in the multipath
components such as changes in the resolved angles in
still or stationary scenarios, or with temporal changes
caused by major movements in stationary or moving
scenarios.

3.3 Feature Extraction
In addition to the multipath components extracted by

Dynamic MUSIC [6] or SpotFi [5] algorithms, PeriFi
uses some statistical features on relative phase values
between antennas and subcarriers to capture temporal
and frequential variations caused by human movements.
Then, it uses a machine learning classifier to convert this
high dimensional feature set into a single model to infer
occupancy. In summary, we can categorize the defined
features as follows:

• Temporal variations: 3 max eigenvalues of corre-
lation matrix of successive measurements of CSI
amplitude, phase, and relative phase.

• Frequential variations: 3 max eigenvalues of cor-
relation matrix of subcarriers over multiple mea-
surements.

Mean, max, min, median, STD, and entropy of:

• AoA, rToF, and power of 3 resolved paths by Spotfi
and Dynamic MUSIC across packets.

• channel components across packets: subcarrier in-
dex and the SNR value of Deep fading, 3 abrupt
change points in SNR pattern across subcarriers.

• channel variation factor for CSI amplitude, phase,
and relative phase across subcarriers as

v =

√
var(x)

1
M

∑M−1
m=o |xm|2

(4)

where x is the vector of CSI measurements with
length M , and var(x) is the sample variance of
vector x. The denominator represents the RMS
value of the vector x.

• entropy of CSI amplitude, phase, and relative phase
across subcarrier.

4. EXPERIMENTAL SETUP

4.1 Implementation
To evaluate our PeriFi system, we employ two laptops

equipped with Intel 5300 WiFi cards and 3 external an-
tennas as the transmitter and receiver. The CSI tool [3]
is installed on them to obtain the CSI phase and am-
plitude values of 30 subcarriers for each received packet
per antenna resulting in a 3x3x30 CSI matrix. We con-
ducted 6 experiments with different link conditions in
a typical office building shown in Figure 3. The com-
munications are operated in 5.63 GHz frequency band
employing an unused 40 MHz channel.

Each experiment includes 4 different types of the oc-
cupancy states in both LOS and NLOS: (1)empty : when
nobody is inside the room, (2)walking : when someone
walks randomly near or far from the LOS, (3)stationary :
when a person is in the room, but only has fine move-
ments such as writing, (4)still : when the occupant is in
the room, but completely still such as sleeping or sit-
ting still. Each experiment includes multiple scenarios
for each of these occupancy states, resulting in 11 dif-
ferent scenarios. A sample experimental setup is shown
in Figure 3. Each scenario is conducted for 1 minute,
resulting in 96 minutes of data in total. For the col-
lection of CSI, the transmission rate of 100 pkts/s is
chosen and a sliding window mechanism with 2-second
time window and 1-second sliding is used.

4.2 Baseline
We compare PeriFi with two recent threshold-based

methods that are widely used in the literature. Both
of these techniques measure the correlation of CSI val-
ues for an empty room and define a threshold line to
differentiate occupied and unoccupied conditions. The
temporal-base thresholding algorithms such as PADS
[8] and DeMan [12] apply eigen decomposition on the
CSI correlation matrices of successive measurement to
extract time dimension information and characterize
the temporal variations of wireless signals caused by hu-
man motions. However, they cannot detect stationary
or still occupants with fine movements. On the other
hand, the frequential-base thresholding algorithms [7]
use the subcarrier dimension information of CSI and ex-
tract the eigenvalues of the correlation matrices of sub-
carriers over multiple measurements. The observations
show that there is a correlation among CSI changes
across subcarriers in the presence of an occupant. In
both of these algorithms, the threshold value is usually
obtained by employing the well-known Support Vector



Figure 3: (Left) Floor plan and a sample experimental setup, (Right) PeriFi achieves 96.7% accuracy
compared with 56.1% in temporal and 76% in frequential baseline.

Method (%) Acc FNR FPR F-Score
PeriFi 96.7 7.6 0 96.1

Temporal Base 56.1 11.1 69.5 63.8
Frequential Base 76.8 23.6 22.8 74.2

Table 1: Detailed performance comparison of
PeriFi with two baselines

Machine (SVM) classification. To have a fair compari-
son, we use the same classification model to train PeriFi.

4.3 Evaluation Metrics
To detect home occupancy, PeriFi requires a WiFi

module in every room of the home to form a wireless
mesh. Therefore, the goal of PeriFi is to use all infor-
mation gathered from multiple links for inferring occu-
pancy. To address this requirement, we build one clas-
sification model for all 6 experiments to represent mul-
tiple links in home. In spite of previous works which
require separate training for each link condition, Per-
iFi provides a generalizable and scalable solution to the
size of homes. To evaluate the classification models,
we use Leave-One-Scenario-Out (LOSO) to provide a
calibration-free evaluation for different occupancy sce-
narios. In addition, we can evaluate the performance
of the proposed system in detecting the occupancy of
scenarios not seen in the training phase.

We measure the following metrics: (1) Detection Rate:
the fraction of cases where the human presence or ab-
sence is detected correctly, (2) False Positive: where a
false “human presence” is announced, (3) False Nega-
tive: where a false “human absence” is announced.

5. EVALUATION
Table 1 summarizes the performance of three meth-

ods based on accuracy, FNR, FPR, and F-Score. Per-
iFi performs 96.7% accurately compared with 56.1%
and 76% in temporal and frequential baselines, respec-
tively. Figure 3 elaborates these numbers in the form of
a confusion matrices. We expect PeriFi to outperform
the temporal and frequential baselines in differentiat-
ing empty states from occupied states with stationary
or still targets, since it doesn’t rely on temporal or fre-
quential variations to detect occupancy. The results

in Figure 3 show that PeriFi outperforms the baselines
by 100% correctly detecting empty states, compared
with 30% and 77% in the baselines. In addition, Per-
iFi achieves 92% accuracy in detecting occupied con-
ditions including moving, stationary, and still scenar-
ios, while the baselines only achieves 89% and 76%. In
spite of PeriFi which performs accurately in differen-
tiating the occupancy states, temporal baseline shifted
the threshold line toward higher values, thus provid-
ing a higher accuracy in detecting occupied scenarios,
while producing higher false positives. The frequential
baseline could define the threshold line more balanced,
however it couldn’t correctly differentiate empty and
occupied states in 20% of cases.

To better understand the reason of false negatives in
all three approaches, we provide detection rates based
on the type of occupancy states in Figure 4. As ex-
pected, all three algorithms could detect moving states
100% because of high disturbance. Low accuracy of
temporal baseline in detecting empty states and fre-
quential baseline in detecting still states indicate that
a threshold-base method is not enough to detect little-
movement occupants. On the other hand, PeriFi could
provide a higher accuracy in detecting all types of occu-
pancy, but it still misses 12% of low-movement still and
stationary states. These misdetections could happen in
scenarios where the target is not in the Fresnel zone of
LOS path or any of the main reflections.

Finally, we categorize the detection rates based on
whether the occupant’s presence happened in the LOS
or NLOS. As shown in Figure 5, PeriFi could enhance
the sensing coverage by using the multipath reflections.
However, it still has lower detection rate in NLOS con-
ditions since the number of resolvable paths are lim-
ited by the size of antenna array. Although increasing
number of antennas or links is a common solution for
this problem, we believe part of this issue could be ad-
dressed by defining higher resolution features to detect
chest movement in completely still occupancy states.

6. DISCUSSION AND FUTURE WORK
The analysis in this paper considers empty room as

a static environment. Therefore, if the links conditions
change such as replacement of the transmitter or re-
ceiver, or adding new links, the system requires to be



Figure 4: PeriFi achieves 93.75% averaged de-
tection rate in all types of occupancy states com-
pared to 74% and 72% in the baselines

recalibrated. However, to reduce the need of recalibra-
tion, we do not rely on portable devices such as cell-
phones and laptops. Instead, we use plug-in WiFi mod-
ules which will be deployed in every room. In addition,
we didn’t study the performance of our method in the
presence of a moving object such as a fan or pets. In our
future work, we will differentiate these conditions based
on the differences in size of disturbances and breathing
rates. For example, a moving animal will create low sig-
nal disturbance but high Doppler values and will affect
a changing set of paths, while a stationary person will
create low signal disturbance with low Doppler values,
affecting only a fixed set of paths. In addition, in this
paper we didn’t study the effect of furniture movements.
As our future work, we plan to design an automatic cali-
bration model inspired from our previous work [11, 4] to
detect empty room in offline mode and use that period
to retrain the classification model.

7. CONCLUSION
In this work, we present an innovative approach for

occupancy detection which converts distortions caused
by multipath propagation to a useful sensing method.
Our proposed approach addresses the challenge of de-
tecting the presence of non-moving people and provides
a single solution to infer home occupancy by using the
concept of peripheral WiFi vision. Our analyses show
that PeriFi can achieve 96.7% accuracy in occupancy
detection with different occupancy scenarios including
empty, moving, stationary, and still.
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